blob: 3cbe52246b81b35e42565bf32e95f1d6db5f62de [file] [log] [blame]
#ifndef BSWAP_H
#define BSWAP_H
#ifdef __cplusplus
extern "C" {
#endif
#undef bswap16
#define bswap16(_x) __builtin_bswap16(_x)
#undef bswap32
#define bswap32(_x) __builtin_bswap32(_x)
#undef bswap64
#define bswap64(_x) __builtin_bswap64(_x)
static inline void bswap16s(uint16_t *s)
{
*s = __builtin_bswap16(*s);
}
static inline void bswap32s(uint32_t *s)
{
*s = __builtin_bswap32(*s);
}
static inline void bswap64s(uint64_t *s)
{
*s = __builtin_bswap64(*s);
}
#if HOST_BIG_ENDIAN
#define be_bswap(v, size) (v)
#define le_bswap(v, size) glue(__builtin_bswap, size)(v)
#define be_bswaps(v, size)
#define le_bswaps(p, size) \
do { *p = glue(__builtin_bswap, size)(*p); } while (0)
#else
#define le_bswap(v, size) (v)
#define be_bswap(v, size) glue(__builtin_bswap, size)(v)
#define le_bswaps(v, size)
#define be_bswaps(p, size) \
do { *p = glue(__builtin_bswap, size)(*p); } while (0)
#endif
/**
* Endianness conversion functions between host cpu and specified endianness.
* (We list the complete set of prototypes produced by the macros below
* to assist people who search the headers to find their definitions.)
*
* uint16_t le16_to_cpu(uint16_t v);
* uint32_t le32_to_cpu(uint32_t v);
* uint64_t le64_to_cpu(uint64_t v);
* uint16_t be16_to_cpu(uint16_t v);
* uint32_t be32_to_cpu(uint32_t v);
* uint64_t be64_to_cpu(uint64_t v);
*
* Convert the value @v from the specified format to the native
* endianness of the host CPU by byteswapping if necessary, and
* return the converted value.
*
* uint16_t cpu_to_le16(uint16_t v);
* uint32_t cpu_to_le32(uint32_t v);
* uint64_t cpu_to_le64(uint64_t v);
* uint16_t cpu_to_be16(uint16_t v);
* uint32_t cpu_to_be32(uint32_t v);
* uint64_t cpu_to_be64(uint64_t v);
*
* Convert the value @v from the native endianness of the host CPU to
* the specified format by byteswapping if necessary, and return
* the converted value.
*
* void le16_to_cpus(uint16_t *v);
* void le32_to_cpus(uint32_t *v);
* void le64_to_cpus(uint64_t *v);
* void be16_to_cpus(uint16_t *v);
* void be32_to_cpus(uint32_t *v);
* void be64_to_cpus(uint64_t *v);
*
* Do an in-place conversion of the value pointed to by @v from the
* specified format to the native endianness of the host CPU.
*
* void cpu_to_le16s(uint16_t *v);
* void cpu_to_le32s(uint32_t *v);
* void cpu_to_le64s(uint64_t *v);
* void cpu_to_be16s(uint16_t *v);
* void cpu_to_be32s(uint32_t *v);
* void cpu_to_be64s(uint64_t *v);
*
* Do an in-place conversion of the value pointed to by @v from the
* native endianness of the host CPU to the specified format.
*
* Both X_to_cpu() and cpu_to_X() perform the same operation; you
* should use whichever one is better documenting of the function your
* code is performing.
*
* Do not use these functions for conversion of values which are in guest
* memory, since the data may not be sufficiently aligned for the host CPU's
* load and store instructions. Instead you should use the ld*_p() and
* st*_p() functions, which perform loads and stores of data of any
* required size and endianness and handle possible misalignment.
*/
#define CPU_CONVERT(endian, size, type)\
static inline type endian ## size ## _to_cpu(type v)\
{\
return glue(endian, _bswap)(v, size);\
}\
\
static inline type cpu_to_ ## endian ## size(type v)\
{\
return glue(endian, _bswap)(v, size);\
}\
\
static inline void endian ## size ## _to_cpus(type *p)\
{\
glue(endian, _bswaps)(p, size);\
}\
\
static inline void cpu_to_ ## endian ## size ## s(type *p)\
{\
glue(endian, _bswaps)(p, size);\
}
CPU_CONVERT(be, 16, uint16_t)
CPU_CONVERT(be, 32, uint32_t)
CPU_CONVERT(be, 64, uint64_t)
CPU_CONVERT(le, 16, uint16_t)
CPU_CONVERT(le, 32, uint32_t)
CPU_CONVERT(le, 64, uint64_t)
/*
* Same as cpu_to_le{16,32}, except that gcc will figure the result is
* a compile-time constant if you pass in a constant. So this can be
* used to initialize static variables.
*/
#if HOST_BIG_ENDIAN
# define const_le32(_x) \
((((_x) & 0x000000ffU) << 24) | \
(((_x) & 0x0000ff00U) << 8) | \
(((_x) & 0x00ff0000U) >> 8) | \
(((_x) & 0xff000000U) >> 24))
# define const_le16(_x) \
((((_x) & 0x00ff) << 8) | \
(((_x) & 0xff00) >> 8))
#else
# define const_le32(_x) (_x)
# define const_le16(_x) (_x)
#endif
/* unaligned/endian-independent pointer access */
/*
* the generic syntax is:
*
* load: ld{type}{sign}{size}_{endian}_p(ptr)
*
* store: st{type}{size}_{endian}_p(ptr, val)
*
* Note there are small differences with the softmmu access API!
*
* type is:
* (empty): integer access
* f : float access
*
* sign is:
* (empty): for 32 or 64 bit sizes (including floats and doubles)
* u : unsigned
* s : signed
*
* size is:
* b: 8 bits
* w: 16 bits
* l: 32 bits
* q: 64 bits
*
* endian is:
* he : host endian
* be : big endian
* le : little endian
* te : target endian
* (except for byte accesses, which have no endian infix).
*
* The target endian accessors are obviously only available to source
* files which are built per-target; they are defined in cpu-all.h.
*
* In all cases these functions take a host pointer.
* For accessors that take a guest address rather than a
* host address, see the cpu_{ld,st}_* accessors defined in
* cpu_ldst.h.
*
* For cases where the size to be used is not fixed at compile time,
* there are
* stn_{endian}_p(ptr, sz, val)
* which stores @val to @ptr as an @endian-order number @sz bytes in size
* and
* ldn_{endian}_p(ptr, sz)
* which loads @sz bytes from @ptr as an unsigned @endian-order number
* and returns it in a uint64_t.
*/
static inline int ldub_p(const void *ptr)
{
return *(uint8_t *)ptr;
}
static inline int ldsb_p(const void *ptr)
{
return *(int8_t *)ptr;
}
static inline void stb_p(void *ptr, uint8_t v)
{
*(uint8_t *)ptr = v;
}
/*
* Any compiler worth its salt will turn these memcpy into native unaligned
* operations. Thus we don't need to play games with packed attributes, or
* inline byte-by-byte stores.
* Some compilation environments (eg some fortify-source implementations)
* may intercept memcpy() in a way that defeats the compiler optimization,
* though, so we use __builtin_memcpy() to give ourselves the best chance
* of good performance.
*/
static inline int lduw_he_p(const void *ptr)
{
uint16_t r;
__builtin_memcpy(&r, ptr, sizeof(r));
return r;
}
static inline int ldsw_he_p(const void *ptr)
{
int16_t r;
__builtin_memcpy(&r, ptr, sizeof(r));
return r;
}
static inline void stw_he_p(void *ptr, uint16_t v)
{
__builtin_memcpy(ptr, &v, sizeof(v));
}
static inline int ldl_he_p(const void *ptr)
{
int32_t r;
__builtin_memcpy(&r, ptr, sizeof(r));
return r;
}
static inline void stl_he_p(void *ptr, uint32_t v)
{
__builtin_memcpy(ptr, &v, sizeof(v));
}
static inline uint64_t ldq_he_p(const void *ptr)
{
uint64_t r;
__builtin_memcpy(&r, ptr, sizeof(r));
return r;
}
static inline void stq_he_p(void *ptr, uint64_t v)
{
__builtin_memcpy(ptr, &v, sizeof(v));
}
static inline int lduw_le_p(const void *ptr)
{
return (uint16_t)le_bswap(lduw_he_p(ptr), 16);
}
static inline int ldsw_le_p(const void *ptr)
{
return (int16_t)le_bswap(lduw_he_p(ptr), 16);
}
static inline int ldl_le_p(const void *ptr)
{
return le_bswap(ldl_he_p(ptr), 32);
}
static inline uint64_t ldq_le_p(const void *ptr)
{
return le_bswap(ldq_he_p(ptr), 64);
}
static inline void stw_le_p(void *ptr, uint16_t v)
{
stw_he_p(ptr, le_bswap(v, 16));
}
static inline void stl_le_p(void *ptr, uint32_t v)
{
stl_he_p(ptr, le_bswap(v, 32));
}
static inline void stq_le_p(void *ptr, uint64_t v)
{
stq_he_p(ptr, le_bswap(v, 64));
}
static inline int lduw_be_p(const void *ptr)
{
return (uint16_t)be_bswap(lduw_he_p(ptr), 16);
}
static inline int ldsw_be_p(const void *ptr)
{
return (int16_t)be_bswap(lduw_he_p(ptr), 16);
}
static inline int ldl_be_p(const void *ptr)
{
return be_bswap(ldl_he_p(ptr), 32);
}
static inline uint64_t ldq_be_p(const void *ptr)
{
return be_bswap(ldq_he_p(ptr), 64);
}
static inline void stw_be_p(void *ptr, uint16_t v)
{
stw_he_p(ptr, be_bswap(v, 16));
}
static inline void stl_be_p(void *ptr, uint32_t v)
{
stl_he_p(ptr, be_bswap(v, 32));
}
static inline void stq_be_p(void *ptr, uint64_t v)
{
stq_he_p(ptr, be_bswap(v, 64));
}
static inline unsigned long leul_to_cpu(unsigned long v)
{
#if HOST_LONG_BITS == 32
return le_bswap(v, 32);
#elif HOST_LONG_BITS == 64
return le_bswap(v, 64);
#else
# error Unknown sizeof long
#endif
}
/* Store v to p as a sz byte value in host order */
#define DO_STN_LDN_P(END) \
static inline void stn_## END ## _p(void *ptr, int sz, uint64_t v) \
{ \
switch (sz) { \
case 1: \
stb_p(ptr, v); \
break; \
case 2: \
stw_ ## END ## _p(ptr, v); \
break; \
case 4: \
stl_ ## END ## _p(ptr, v); \
break; \
case 8: \
stq_ ## END ## _p(ptr, v); \
break; \
default: \
g_assert_not_reached(); \
} \
} \
static inline uint64_t ldn_## END ## _p(const void *ptr, int sz) \
{ \
switch (sz) { \
case 1: \
return ldub_p(ptr); \
case 2: \
return lduw_ ## END ## _p(ptr); \
case 4: \
return (uint32_t)ldl_ ## END ## _p(ptr); \
case 8: \
return ldq_ ## END ## _p(ptr); \
default: \
g_assert_not_reached(); \
} \
}
DO_STN_LDN_P(he)
DO_STN_LDN_P(le)
DO_STN_LDN_P(be)
#undef DO_STN_LDN_P
#undef le_bswap
#undef be_bswap
#undef le_bswaps
#undef be_bswaps
#ifdef __cplusplus
}
#endif
#endif /* BSWAP_H */