| /* |
| * ARM translation: AArch32 VFP instructions |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * Copyright (c) 2005-2007 CodeSourcery |
| * Copyright (c) 2007 OpenedHand, Ltd. |
| * Copyright (c) 2019 Linaro, Ltd. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "tcg/tcg-op.h" |
| #include "tcg/tcg-op-gvec.h" |
| #include "exec/exec-all.h" |
| #include "exec/gen-icount.h" |
| #include "translate.h" |
| #include "translate-a32.h" |
| |
| /* Include the generated VFP decoder */ |
| #include "decode-vfp.c.inc" |
| #include "decode-vfp-uncond.c.inc" |
| |
| static inline void vfp_load_reg64(TCGv_i64 var, int reg) |
| { |
| tcg_gen_ld_i64(var, cpu_env, vfp_reg_offset(true, reg)); |
| } |
| |
| static inline void vfp_store_reg64(TCGv_i64 var, int reg) |
| { |
| tcg_gen_st_i64(var, cpu_env, vfp_reg_offset(true, reg)); |
| } |
| |
| static inline void vfp_load_reg32(TCGv_i32 var, int reg) |
| { |
| tcg_gen_ld_i32(var, cpu_env, vfp_reg_offset(false, reg)); |
| } |
| |
| static inline void vfp_store_reg32(TCGv_i32 var, int reg) |
| { |
| tcg_gen_st_i32(var, cpu_env, vfp_reg_offset(false, reg)); |
| } |
| |
| /* |
| * The imm8 encodes the sign bit, enough bits to represent an exponent in |
| * the range 01....1xx to 10....0xx, and the most significant 4 bits of |
| * the mantissa; see VFPExpandImm() in the v8 ARM ARM. |
| */ |
| uint64_t vfp_expand_imm(int size, uint8_t imm8) |
| { |
| uint64_t imm; |
| |
| switch (size) { |
| case MO_64: |
| imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) | |
| (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) | |
| extract32(imm8, 0, 6); |
| imm <<= 48; |
| break; |
| case MO_32: |
| imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) | |
| (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) | |
| (extract32(imm8, 0, 6) << 3); |
| imm <<= 16; |
| break; |
| case MO_16: |
| imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) | |
| (extract32(imm8, 6, 1) ? 0x3000 : 0x4000) | |
| (extract32(imm8, 0, 6) << 6); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| return imm; |
| } |
| |
| /* |
| * Return the offset of a 16-bit half of the specified VFP single-precision |
| * register. If top is true, returns the top 16 bits; otherwise the bottom |
| * 16 bits. |
| */ |
| static inline long vfp_f16_offset(unsigned reg, bool top) |
| { |
| long offs = vfp_reg_offset(false, reg); |
| #if HOST_BIG_ENDIAN |
| if (!top) { |
| offs += 2; |
| } |
| #else |
| if (top) { |
| offs += 2; |
| } |
| #endif |
| return offs; |
| } |
| |
| /* |
| * Generate code for M-profile lazy FP state preservation if needed; |
| * this corresponds to the pseudocode PreserveFPState() function. |
| */ |
| static void gen_preserve_fp_state(DisasContext *s, bool skip_context_update) |
| { |
| if (s->v7m_lspact) { |
| /* |
| * Lazy state saving affects external memory and also the NVIC, |
| * so we must mark it as an IO operation for icount (and cause |
| * this to be the last insn in the TB). |
| */ |
| if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { |
| s->base.is_jmp = DISAS_UPDATE_EXIT; |
| gen_io_start(); |
| } |
| gen_helper_v7m_preserve_fp_state(cpu_env); |
| /* |
| * If the preserve_fp_state helper doesn't throw an exception |
| * then it will clear LSPACT; we don't need to repeat this for |
| * any further FP insns in this TB. |
| */ |
| s->v7m_lspact = false; |
| /* |
| * The helper might have zeroed VPR, so we do not know the |
| * correct value for the MVE_NO_PRED TB flag any more. |
| * If we're about to create a new fp context then that |
| * will precisely determine the MVE_NO_PRED value (see |
| * gen_update_fp_context()). Otherwise, we must: |
| * - set s->mve_no_pred to false, so this instruction |
| * is generated to use helper functions |
| * - end the TB now, without chaining to the next TB |
| */ |
| if (skip_context_update || !s->v7m_new_fp_ctxt_needed) { |
| s->mve_no_pred = false; |
| s->base.is_jmp = DISAS_UPDATE_NOCHAIN; |
| } |
| } |
| } |
| |
| /* |
| * Generate code for M-profile FP context handling: update the |
| * ownership of the FP context, and create a new context if |
| * necessary. This corresponds to the parts of the pseudocode |
| * ExecuteFPCheck() after the inital PreserveFPState() call. |
| */ |
| static void gen_update_fp_context(DisasContext *s) |
| { |
| /* Update ownership of FP context: set FPCCR.S to match current state */ |
| if (s->v8m_fpccr_s_wrong) { |
| TCGv_i32 tmp; |
| |
| tmp = load_cpu_field(v7m.fpccr[M_REG_S]); |
| if (s->v8m_secure) { |
| tcg_gen_ori_i32(tmp, tmp, R_V7M_FPCCR_S_MASK); |
| } else { |
| tcg_gen_andi_i32(tmp, tmp, ~R_V7M_FPCCR_S_MASK); |
| } |
| store_cpu_field(tmp, v7m.fpccr[M_REG_S]); |
| /* Don't need to do this for any further FP insns in this TB */ |
| s->v8m_fpccr_s_wrong = false; |
| } |
| |
| if (s->v7m_new_fp_ctxt_needed) { |
| /* |
| * Create new FP context by updating CONTROL.FPCA, CONTROL.SFPA, |
| * the FPSCR, and VPR. |
| */ |
| TCGv_i32 control, fpscr; |
| uint32_t bits = R_V7M_CONTROL_FPCA_MASK; |
| |
| fpscr = load_cpu_field(v7m.fpdscr[s->v8m_secure]); |
| gen_helper_vfp_set_fpscr(cpu_env, fpscr); |
| tcg_temp_free_i32(fpscr); |
| if (dc_isar_feature(aa32_mve, s)) { |
| store_cpu_field(tcg_constant_i32(0), v7m.vpr); |
| } |
| /* |
| * We just updated the FPSCR and VPR. Some of this state is cached |
| * in the MVE_NO_PRED TB flag. We want to avoid having to end the |
| * TB here, which means we need the new value of the MVE_NO_PRED |
| * flag to be exactly known here and the same for all executions. |
| * Luckily FPDSCR.LTPSIZE is always constant 4 and the VPR is |
| * always set to 0, so the new MVE_NO_PRED flag is always 1 |
| * if and only if we have MVE. |
| * |
| * (The other FPSCR state cached in TB flags is VECLEN and VECSTRIDE, |
| * but those do not exist for M-profile, so are not relevant here.) |
| */ |
| s->mve_no_pred = dc_isar_feature(aa32_mve, s); |
| |
| if (s->v8m_secure) { |
| bits |= R_V7M_CONTROL_SFPA_MASK; |
| } |
| control = load_cpu_field(v7m.control[M_REG_S]); |
| tcg_gen_ori_i32(control, control, bits); |
| store_cpu_field(control, v7m.control[M_REG_S]); |
| /* Don't need to do this for any further FP insns in this TB */ |
| s->v7m_new_fp_ctxt_needed = false; |
| } |
| } |
| |
| /* |
| * Check that VFP access is enabled, A-profile specific version. |
| * |
| * If VFP is enabled, return true. If not, emit code to generate an |
| * appropriate exception and return false. |
| * The ignore_vfp_enabled argument specifies that we should ignore |
| * whether VFP is enabled via FPEXC.EN: this should be true for FMXR/FMRX |
| * accesses to FPSID, FPEXC, MVFR0, MVFR1, MVFR2, and false for all other insns. |
| */ |
| static bool vfp_access_check_a(DisasContext *s, bool ignore_vfp_enabled) |
| { |
| if (s->fp_excp_el) { |
| /* |
| * The full syndrome is only used for HSR when HCPTR traps: |
| * For v8, when TA==0, coproc is RES0. |
| * For v7, any use of a Floating-point instruction or access |
| * to a Floating-point Extension register that is trapped to |
| * Hyp mode because of a trap configured in the HCPTR sets |
| * this field to 0xA. |
| */ |
| int coproc = arm_dc_feature(s, ARM_FEATURE_V8) ? 0 : 0xa; |
| uint32_t syn = syn_fp_access_trap(1, 0xe, false, coproc); |
| |
| gen_exception_insn_el(s, s->pc_curr, EXCP_UDEF, syn, s->fp_excp_el); |
| return false; |
| } |
| |
| if (!s->vfp_enabled && !ignore_vfp_enabled) { |
| assert(!arm_dc_feature(s, ARM_FEATURE_M)); |
| unallocated_encoding(s); |
| return false; |
| } |
| return true; |
| } |
| |
| /* |
| * Check that VFP access is enabled, M-profile specific version. |
| * |
| * If VFP is enabled, do the necessary M-profile lazy-FP handling and then |
| * return true. If not, emit code to generate an appropriate exception and |
| * return false. |
| * skip_context_update is true to skip the "update FP context" part of this. |
| */ |
| bool vfp_access_check_m(DisasContext *s, bool skip_context_update) |
| { |
| if (s->fp_excp_el) { |
| /* |
| * M-profile mostly catches the "FPU disabled" case early, in |
| * disas_m_nocp(), but a few insns (eg LCTP, WLSTP, DLSTP) |
| * which do coprocessor-checks are outside the large ranges of |
| * the encoding space handled by the patterns in m-nocp.decode, |
| * and for them we may need to raise NOCP here. |
| */ |
| gen_exception_insn_el(s, s->pc_curr, EXCP_NOCP, |
| syn_uncategorized(), s->fp_excp_el); |
| return false; |
| } |
| |
| /* Handle M-profile lazy FP state mechanics */ |
| |
| /* Trigger lazy-state preservation if necessary */ |
| gen_preserve_fp_state(s, skip_context_update); |
| |
| if (!skip_context_update) { |
| /* Update ownership of FP context and create new FP context if needed */ |
| gen_update_fp_context(s); |
| } |
| |
| return true; |
| } |
| |
| /* |
| * The most usual kind of VFP access check, for everything except |
| * FMXR/FMRX to the always-available special registers. |
| */ |
| bool vfp_access_check(DisasContext *s) |
| { |
| if (arm_dc_feature(s, ARM_FEATURE_M)) { |
| return vfp_access_check_m(s, false); |
| } else { |
| return vfp_access_check_a(s, false); |
| } |
| } |
| |
| static bool trans_VSEL(DisasContext *s, arg_VSEL *a) |
| { |
| uint32_t rd, rn, rm; |
| int sz = a->sz; |
| |
| if (!dc_isar_feature(aa32_vsel, s)) { |
| return false; |
| } |
| |
| if (sz == 3 && !dc_isar_feature(aa32_fpdp_v2, s)) { |
| return false; |
| } |
| |
| if (sz == 1 && !dc_isar_feature(aa32_fp16_arith, s)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist */ |
| if (sz == 3 && !dc_isar_feature(aa32_simd_r32, s) && |
| ((a->vm | a->vn | a->vd) & 0x10)) { |
| return false; |
| } |
| |
| rd = a->vd; |
| rn = a->vn; |
| rm = a->vm; |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| if (sz == 3) { |
| TCGv_i64 frn, frm, dest; |
| TCGv_i64 tmp, zero, zf, nf, vf; |
| |
| zero = tcg_constant_i64(0); |
| |
| frn = tcg_temp_new_i64(); |
| frm = tcg_temp_new_i64(); |
| dest = tcg_temp_new_i64(); |
| |
| zf = tcg_temp_new_i64(); |
| nf = tcg_temp_new_i64(); |
| vf = tcg_temp_new_i64(); |
| |
| tcg_gen_extu_i32_i64(zf, cpu_ZF); |
| tcg_gen_ext_i32_i64(nf, cpu_NF); |
| tcg_gen_ext_i32_i64(vf, cpu_VF); |
| |
| vfp_load_reg64(frn, rn); |
| vfp_load_reg64(frm, rm); |
| switch (a->cc) { |
| case 0: /* eq: Z */ |
| tcg_gen_movcond_i64(TCG_COND_EQ, dest, zf, zero, frn, frm); |
| break; |
| case 1: /* vs: V */ |
| tcg_gen_movcond_i64(TCG_COND_LT, dest, vf, zero, frn, frm); |
| break; |
| case 2: /* ge: N == V -> N ^ V == 0 */ |
| tmp = tcg_temp_new_i64(); |
| tcg_gen_xor_i64(tmp, vf, nf); |
| tcg_gen_movcond_i64(TCG_COND_GE, dest, tmp, zero, frn, frm); |
| tcg_temp_free_i64(tmp); |
| break; |
| case 3: /* gt: !Z && N == V */ |
| tcg_gen_movcond_i64(TCG_COND_NE, dest, zf, zero, frn, frm); |
| tmp = tcg_temp_new_i64(); |
| tcg_gen_xor_i64(tmp, vf, nf); |
| tcg_gen_movcond_i64(TCG_COND_GE, dest, tmp, zero, dest, frm); |
| tcg_temp_free_i64(tmp); |
| break; |
| } |
| vfp_store_reg64(dest, rd); |
| tcg_temp_free_i64(frn); |
| tcg_temp_free_i64(frm); |
| tcg_temp_free_i64(dest); |
| |
| tcg_temp_free_i64(zf); |
| tcg_temp_free_i64(nf); |
| tcg_temp_free_i64(vf); |
| } else { |
| TCGv_i32 frn, frm, dest; |
| TCGv_i32 tmp, zero; |
| |
| zero = tcg_constant_i32(0); |
| |
| frn = tcg_temp_new_i32(); |
| frm = tcg_temp_new_i32(); |
| dest = tcg_temp_new_i32(); |
| vfp_load_reg32(frn, rn); |
| vfp_load_reg32(frm, rm); |
| switch (a->cc) { |
| case 0: /* eq: Z */ |
| tcg_gen_movcond_i32(TCG_COND_EQ, dest, cpu_ZF, zero, frn, frm); |
| break; |
| case 1: /* vs: V */ |
| tcg_gen_movcond_i32(TCG_COND_LT, dest, cpu_VF, zero, frn, frm); |
| break; |
| case 2: /* ge: N == V -> N ^ V == 0 */ |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_xor_i32(tmp, cpu_VF, cpu_NF); |
| tcg_gen_movcond_i32(TCG_COND_GE, dest, tmp, zero, frn, frm); |
| tcg_temp_free_i32(tmp); |
| break; |
| case 3: /* gt: !Z && N == V */ |
| tcg_gen_movcond_i32(TCG_COND_NE, dest, cpu_ZF, zero, frn, frm); |
| tmp = tcg_temp_new_i32(); |
| tcg_gen_xor_i32(tmp, cpu_VF, cpu_NF); |
| tcg_gen_movcond_i32(TCG_COND_GE, dest, tmp, zero, dest, frm); |
| tcg_temp_free_i32(tmp); |
| break; |
| } |
| /* For fp16 the top half is always zeroes */ |
| if (sz == 1) { |
| tcg_gen_andi_i32(dest, dest, 0xffff); |
| } |
| vfp_store_reg32(dest, rd); |
| tcg_temp_free_i32(frn); |
| tcg_temp_free_i32(frm); |
| tcg_temp_free_i32(dest); |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Table for converting the most common AArch32 encoding of |
| * rounding mode to arm_fprounding order (which matches the |
| * common AArch64 order); see ARM ARM pseudocode FPDecodeRM(). |
| */ |
| static const uint8_t fp_decode_rm[] = { |
| FPROUNDING_TIEAWAY, |
| FPROUNDING_TIEEVEN, |
| FPROUNDING_POSINF, |
| FPROUNDING_NEGINF, |
| }; |
| |
| static bool trans_VRINT(DisasContext *s, arg_VRINT *a) |
| { |
| uint32_t rd, rm; |
| int sz = a->sz; |
| TCGv_ptr fpst; |
| TCGv_i32 tcg_rmode; |
| int rounding = fp_decode_rm[a->rm]; |
| |
| if (!dc_isar_feature(aa32_vrint, s)) { |
| return false; |
| } |
| |
| if (sz == 3 && !dc_isar_feature(aa32_fpdp_v2, s)) { |
| return false; |
| } |
| |
| if (sz == 1 && !dc_isar_feature(aa32_fp16_arith, s)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist */ |
| if (sz == 3 && !dc_isar_feature(aa32_simd_r32, s) && |
| ((a->vm | a->vd) & 0x10)) { |
| return false; |
| } |
| |
| rd = a->vd; |
| rm = a->vm; |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| if (sz == 1) { |
| fpst = fpstatus_ptr(FPST_FPCR_F16); |
| } else { |
| fpst = fpstatus_ptr(FPST_FPCR); |
| } |
| |
| tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rounding)); |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); |
| |
| if (sz == 3) { |
| TCGv_i64 tcg_op; |
| TCGv_i64 tcg_res; |
| tcg_op = tcg_temp_new_i64(); |
| tcg_res = tcg_temp_new_i64(); |
| vfp_load_reg64(tcg_op, rm); |
| gen_helper_rintd(tcg_res, tcg_op, fpst); |
| vfp_store_reg64(tcg_res, rd); |
| tcg_temp_free_i64(tcg_op); |
| tcg_temp_free_i64(tcg_res); |
| } else { |
| TCGv_i32 tcg_op; |
| TCGv_i32 tcg_res; |
| tcg_op = tcg_temp_new_i32(); |
| tcg_res = tcg_temp_new_i32(); |
| vfp_load_reg32(tcg_op, rm); |
| if (sz == 1) { |
| gen_helper_rinth(tcg_res, tcg_op, fpst); |
| } else { |
| gen_helper_rints(tcg_res, tcg_op, fpst); |
| } |
| vfp_store_reg32(tcg_res, rd); |
| tcg_temp_free_i32(tcg_op); |
| tcg_temp_free_i32(tcg_res); |
| } |
| |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); |
| tcg_temp_free_i32(tcg_rmode); |
| |
| tcg_temp_free_ptr(fpst); |
| return true; |
| } |
| |
| static bool trans_VCVT(DisasContext *s, arg_VCVT *a) |
| { |
| uint32_t rd, rm; |
| int sz = a->sz; |
| TCGv_ptr fpst; |
| TCGv_i32 tcg_rmode, tcg_shift; |
| int rounding = fp_decode_rm[a->rm]; |
| bool is_signed = a->op; |
| |
| if (!dc_isar_feature(aa32_vcvt_dr, s)) { |
| return false; |
| } |
| |
| if (sz == 3 && !dc_isar_feature(aa32_fpdp_v2, s)) { |
| return false; |
| } |
| |
| if (sz == 1 && !dc_isar_feature(aa32_fp16_arith, s)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist */ |
| if (sz == 3 && !dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) { |
| return false; |
| } |
| |
| rd = a->vd; |
| rm = a->vm; |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| if (sz == 1) { |
| fpst = fpstatus_ptr(FPST_FPCR_F16); |
| } else { |
| fpst = fpstatus_ptr(FPST_FPCR); |
| } |
| |
| tcg_shift = tcg_constant_i32(0); |
| |
| tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rounding)); |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); |
| |
| if (sz == 3) { |
| TCGv_i64 tcg_double, tcg_res; |
| TCGv_i32 tcg_tmp; |
| tcg_double = tcg_temp_new_i64(); |
| tcg_res = tcg_temp_new_i64(); |
| tcg_tmp = tcg_temp_new_i32(); |
| vfp_load_reg64(tcg_double, rm); |
| if (is_signed) { |
| gen_helper_vfp_tosld(tcg_res, tcg_double, tcg_shift, fpst); |
| } else { |
| gen_helper_vfp_tould(tcg_res, tcg_double, tcg_shift, fpst); |
| } |
| tcg_gen_extrl_i64_i32(tcg_tmp, tcg_res); |
| vfp_store_reg32(tcg_tmp, rd); |
| tcg_temp_free_i32(tcg_tmp); |
| tcg_temp_free_i64(tcg_res); |
| tcg_temp_free_i64(tcg_double); |
| } else { |
| TCGv_i32 tcg_single, tcg_res; |
| tcg_single = tcg_temp_new_i32(); |
| tcg_res = tcg_temp_new_i32(); |
| vfp_load_reg32(tcg_single, rm); |
| if (sz == 1) { |
| if (is_signed) { |
| gen_helper_vfp_toslh(tcg_res, tcg_single, tcg_shift, fpst); |
| } else { |
| gen_helper_vfp_toulh(tcg_res, tcg_single, tcg_shift, fpst); |
| } |
| } else { |
| if (is_signed) { |
| gen_helper_vfp_tosls(tcg_res, tcg_single, tcg_shift, fpst); |
| } else { |
| gen_helper_vfp_touls(tcg_res, tcg_single, tcg_shift, fpst); |
| } |
| } |
| vfp_store_reg32(tcg_res, rd); |
| tcg_temp_free_i32(tcg_res); |
| tcg_temp_free_i32(tcg_single); |
| } |
| |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); |
| tcg_temp_free_i32(tcg_rmode); |
| |
| tcg_temp_free_ptr(fpst); |
| |
| return true; |
| } |
| |
| bool mve_skip_vmov(DisasContext *s, int vn, int index, int size) |
| { |
| /* |
| * In a CPU with MVE, the VMOV (vector lane to general-purpose register) |
| * and VMOV (general-purpose register to vector lane) insns are not |
| * predicated, but they are subject to beatwise execution if they are |
| * not in an IT block. |
| * |
| * Since our implementation always executes all 4 beats in one tick, |
| * this means only that if PSR.ECI says we should not be executing |
| * the beat corresponding to the lane of the vector register being |
| * accessed then we should skip performing the move, and that we need |
| * to do the usual check for bad ECI state and advance of ECI state. |
| * |
| * Note that if PSR.ECI is non-zero then we cannot be in an IT block. |
| * |
| * Return true if this VMOV scalar <-> gpreg should be skipped because |
| * the MVE PSR.ECI state says we skip the beat where the store happens. |
| */ |
| |
| /* Calculate the byte offset into Qn which we're going to access */ |
| int ofs = (index << size) + ((vn & 1) * 8); |
| |
| if (!dc_isar_feature(aa32_mve, s)) { |
| return false; |
| } |
| |
| switch (s->eci) { |
| case ECI_NONE: |
| return false; |
| case ECI_A0: |
| return ofs < 4; |
| case ECI_A0A1: |
| return ofs < 8; |
| case ECI_A0A1A2: |
| case ECI_A0A1A2B0: |
| return ofs < 12; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static bool trans_VMOV_to_gp(DisasContext *s, arg_VMOV_to_gp *a) |
| { |
| /* VMOV scalar to general purpose register */ |
| TCGv_i32 tmp; |
| |
| /* |
| * SIZE == MO_32 is a VFP instruction; otherwise NEON. MVE has |
| * all sizes, whether the CPU has fp or not. |
| */ |
| if (!dc_isar_feature(aa32_mve, s)) { |
| if (a->size == MO_32 |
| ? !dc_isar_feature(aa32_fpsp_v2, s) |
| : !arm_dc_feature(s, ARM_FEATURE_NEON)) { |
| return false; |
| } |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && (a->vn & 0x10)) { |
| return false; |
| } |
| |
| if (dc_isar_feature(aa32_mve, s)) { |
| if (!mve_eci_check(s)) { |
| return true; |
| } |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| if (!mve_skip_vmov(s, a->vn, a->index, a->size)) { |
| tmp = tcg_temp_new_i32(); |
| read_neon_element32(tmp, a->vn, a->index, |
| a->size | (a->u ? 0 : MO_SIGN)); |
| store_reg(s, a->rt, tmp); |
| } |
| |
| if (dc_isar_feature(aa32_mve, s)) { |
| mve_update_and_store_eci(s); |
| } |
| return true; |
| } |
| |
| static bool trans_VMOV_from_gp(DisasContext *s, arg_VMOV_from_gp *a) |
| { |
| /* VMOV general purpose register to scalar */ |
| TCGv_i32 tmp; |
| |
| /* |
| * SIZE == MO_32 is a VFP instruction; otherwise NEON. MVE has |
| * all sizes, whether the CPU has fp or not. |
| */ |
| if (!dc_isar_feature(aa32_mve, s)) { |
| if (a->size == MO_32 |
| ? !dc_isar_feature(aa32_fpsp_v2, s) |
| : !arm_dc_feature(s, ARM_FEATURE_NEON)) { |
| return false; |
| } |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && (a->vn & 0x10)) { |
| return false; |
| } |
| |
| if (dc_isar_feature(aa32_mve, s)) { |
| if (!mve_eci_check(s)) { |
| return true; |
| } |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| if (!mve_skip_vmov(s, a->vn, a->index, a->size)) { |
| tmp = load_reg(s, a->rt); |
| write_neon_element32(tmp, a->vn, a->index, a->size); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| if (dc_isar_feature(aa32_mve, s)) { |
| mve_update_and_store_eci(s); |
| } |
| return true; |
| } |
| |
| static bool trans_VDUP(DisasContext *s, arg_VDUP *a) |
| { |
| /* VDUP (general purpose register) */ |
| TCGv_i32 tmp; |
| int size, vec_size; |
| |
| if (!arm_dc_feature(s, ARM_FEATURE_NEON)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && (a->vn & 0x10)) { |
| return false; |
| } |
| |
| if (a->b && a->e) { |
| return false; |
| } |
| |
| if (a->q && (a->vn & 1)) { |
| return false; |
| } |
| |
| vec_size = a->q ? 16 : 8; |
| if (a->b) { |
| size = 0; |
| } else if (a->e) { |
| size = 1; |
| } else { |
| size = 2; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| tmp = load_reg(s, a->rt); |
| tcg_gen_gvec_dup_i32(size, neon_full_reg_offset(a->vn), |
| vec_size, vec_size, tmp); |
| tcg_temp_free_i32(tmp); |
| |
| return true; |
| } |
| |
| static bool trans_VMSR_VMRS(DisasContext *s, arg_VMSR_VMRS *a) |
| { |
| TCGv_i32 tmp; |
| bool ignore_vfp_enabled = false; |
| |
| if (arm_dc_feature(s, ARM_FEATURE_M)) { |
| /* M profile version was already handled in m-nocp.decode */ |
| return false; |
| } |
| |
| if (!dc_isar_feature(aa32_fpsp_v2, s)) { |
| return false; |
| } |
| |
| switch (a->reg) { |
| case ARM_VFP_FPSID: |
| /* |
| * VFPv2 allows access to FPSID from userspace; VFPv3 restricts |
| * all ID registers to privileged access only. |
| */ |
| if (IS_USER(s) && dc_isar_feature(aa32_fpsp_v3, s)) { |
| return false; |
| } |
| ignore_vfp_enabled = true; |
| break; |
| case ARM_VFP_MVFR0: |
| case ARM_VFP_MVFR1: |
| if (IS_USER(s) || !arm_dc_feature(s, ARM_FEATURE_MVFR)) { |
| return false; |
| } |
| ignore_vfp_enabled = true; |
| break; |
| case ARM_VFP_MVFR2: |
| if (IS_USER(s) || !arm_dc_feature(s, ARM_FEATURE_V8)) { |
| return false; |
| } |
| ignore_vfp_enabled = true; |
| break; |
| case ARM_VFP_FPSCR: |
| break; |
| case ARM_VFP_FPEXC: |
| if (IS_USER(s)) { |
| return false; |
| } |
| ignore_vfp_enabled = true; |
| break; |
| case ARM_VFP_FPINST: |
| case ARM_VFP_FPINST2: |
| /* Not present in VFPv3 */ |
| if (IS_USER(s) || dc_isar_feature(aa32_fpsp_v3, s)) { |
| return false; |
| } |
| break; |
| default: |
| return false; |
| } |
| |
| /* |
| * Call vfp_access_check_a() directly, because we need to tell |
| * it to ignore FPEXC.EN for some register accesses. |
| */ |
| if (!vfp_access_check_a(s, ignore_vfp_enabled)) { |
| return true; |
| } |
| |
| if (a->l) { |
| /* VMRS, move VFP special register to gp register */ |
| switch (a->reg) { |
| case ARM_VFP_MVFR0: |
| case ARM_VFP_MVFR1: |
| case ARM_VFP_MVFR2: |
| case ARM_VFP_FPSID: |
| if (s->current_el == 1) { |
| gen_set_condexec(s); |
| gen_set_pc_im(s, s->pc_curr); |
| gen_helper_check_hcr_el2_trap(cpu_env, |
| tcg_constant_i32(a->rt), |
| tcg_constant_i32(a->reg)); |
| } |
| /* fall through */ |
| case ARM_VFP_FPEXC: |
| case ARM_VFP_FPINST: |
| case ARM_VFP_FPINST2: |
| tmp = load_cpu_field(vfp.xregs[a->reg]); |
| break; |
| case ARM_VFP_FPSCR: |
| if (a->rt == 15) { |
| tmp = load_cpu_field(vfp.xregs[ARM_VFP_FPSCR]); |
| tcg_gen_andi_i32(tmp, tmp, FPCR_NZCV_MASK); |
| } else { |
| tmp = tcg_temp_new_i32(); |
| gen_helper_vfp_get_fpscr(tmp, cpu_env); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (a->rt == 15) { |
| /* Set the 4 flag bits in the CPSR. */ |
| gen_set_nzcv(tmp); |
| tcg_temp_free_i32(tmp); |
| } else { |
| store_reg(s, a->rt, tmp); |
| } |
| } else { |
| /* VMSR, move gp register to VFP special register */ |
| switch (a->reg) { |
| case ARM_VFP_FPSID: |
| case ARM_VFP_MVFR0: |
| case ARM_VFP_MVFR1: |
| case ARM_VFP_MVFR2: |
| /* Writes are ignored. */ |
| break; |
| case ARM_VFP_FPSCR: |
| tmp = load_reg(s, a->rt); |
| gen_helper_vfp_set_fpscr(cpu_env, tmp); |
| tcg_temp_free_i32(tmp); |
| gen_lookup_tb(s); |
| break; |
| case ARM_VFP_FPEXC: |
| /* |
| * TODO: VFP subarchitecture support. |
| * For now, keep the EN bit only |
| */ |
| tmp = load_reg(s, a->rt); |
| tcg_gen_andi_i32(tmp, tmp, 1 << 30); |
| store_cpu_field(tmp, vfp.xregs[a->reg]); |
| gen_lookup_tb(s); |
| break; |
| case ARM_VFP_FPINST: |
| case ARM_VFP_FPINST2: |
| tmp = load_reg(s, a->rt); |
| store_cpu_field(tmp, vfp.xregs[a->reg]); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| static bool trans_VMOV_half(DisasContext *s, arg_VMOV_single *a) |
| { |
| TCGv_i32 tmp; |
| |
| if (!dc_isar_feature(aa32_fp16_arith, s)) { |
| return false; |
| } |
| |
| if (a->rt == 15) { |
| /* UNPREDICTABLE; we choose to UNDEF */ |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| if (a->l) { |
| /* VFP to general purpose register */ |
| tmp = tcg_temp_new_i32(); |
| vfp_load_reg32(tmp, a->vn); |
| tcg_gen_andi_i32(tmp, tmp, 0xffff); |
| store_reg(s, a->rt, tmp); |
| } else { |
| /* general purpose register to VFP */ |
| tmp = load_reg(s, a->rt); |
| tcg_gen_andi_i32(tmp, tmp, 0xffff); |
| vfp_store_reg32(tmp, a->vn); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| return true; |
| } |
| |
| static bool trans_VMOV_single(DisasContext *s, arg_VMOV_single *a) |
| { |
| TCGv_i32 tmp; |
| |
| if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| if (a->l) { |
| /* VFP to general purpose register */ |
| tmp = tcg_temp_new_i32(); |
| vfp_load_reg32(tmp, a->vn); |
| if (a->rt == 15) { |
| /* Set the 4 flag bits in the CPSR. */ |
| gen_set_nzcv(tmp); |
| tcg_temp_free_i32(tmp); |
| } else { |
| store_reg(s, a->rt, tmp); |
| } |
| } else { |
| /* general purpose register to VFP */ |
| tmp = load_reg(s, a->rt); |
| vfp_store_reg32(tmp, a->vn); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| return true; |
| } |
| |
| static bool trans_VMOV_64_sp(DisasContext *s, arg_VMOV_64_sp *a) |
| { |
| TCGv_i32 tmp; |
| |
| if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) { |
| return false; |
| } |
| |
| /* |
| * VMOV between two general-purpose registers and two single precision |
| * floating point registers |
| */ |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| if (a->op) { |
| /* fpreg to gpreg */ |
| tmp = tcg_temp_new_i32(); |
| vfp_load_reg32(tmp, a->vm); |
| store_reg(s, a->rt, tmp); |
| tmp = tcg_temp_new_i32(); |
| vfp_load_reg32(tmp, a->vm + 1); |
| store_reg(s, a->rt2, tmp); |
| } else { |
| /* gpreg to fpreg */ |
| tmp = load_reg(s, a->rt); |
| vfp_store_reg32(tmp, a->vm); |
| tcg_temp_free_i32(tmp); |
| tmp = load_reg(s, a->rt2); |
| vfp_store_reg32(tmp, a->vm + 1); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| return true; |
| } |
| |
| static bool trans_VMOV_64_dp(DisasContext *s, arg_VMOV_64_dp *a) |
| { |
| TCGv_i32 tmp; |
| |
| /* |
| * VMOV between two general-purpose registers and one double precision |
| * floating point register. Note that this does not require support |
| * for double precision arithmetic. |
| */ |
| if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| if (a->op) { |
| /* fpreg to gpreg */ |
| tmp = tcg_temp_new_i32(); |
| vfp_load_reg32(tmp, a->vm * 2); |
| store_reg(s, a->rt, tmp); |
| tmp = tcg_temp_new_i32(); |
| vfp_load_reg32(tmp, a->vm * 2 + 1); |
| store_reg(s, a->rt2, tmp); |
| } else { |
| /* gpreg to fpreg */ |
| tmp = load_reg(s, a->rt); |
| vfp_store_reg32(tmp, a->vm * 2); |
| tcg_temp_free_i32(tmp); |
| tmp = load_reg(s, a->rt2); |
| vfp_store_reg32(tmp, a->vm * 2 + 1); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| return true; |
| } |
| |
| static bool trans_VLDR_VSTR_hp(DisasContext *s, arg_VLDR_VSTR_sp *a) |
| { |
| uint32_t offset; |
| TCGv_i32 addr, tmp; |
| |
| if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| /* imm8 field is offset/2 for fp16, unlike fp32 and fp64 */ |
| offset = a->imm << 1; |
| if (!a->u) { |
| offset = -offset; |
| } |
| |
| /* For thumb, use of PC is UNPREDICTABLE. */ |
| addr = add_reg_for_lit(s, a->rn, offset); |
| tmp = tcg_temp_new_i32(); |
| if (a->l) { |
| gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), MO_UW | MO_ALIGN); |
| vfp_store_reg32(tmp, a->vd); |
| } else { |
| vfp_load_reg32(tmp, a->vd); |
| gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UW | MO_ALIGN); |
| } |
| tcg_temp_free_i32(tmp); |
| tcg_temp_free_i32(addr); |
| |
| return true; |
| } |
| |
| static bool trans_VLDR_VSTR_sp(DisasContext *s, arg_VLDR_VSTR_sp *a) |
| { |
| uint32_t offset; |
| TCGv_i32 addr, tmp; |
| |
| if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| offset = a->imm << 2; |
| if (!a->u) { |
| offset = -offset; |
| } |
| |
| /* For thumb, use of PC is UNPREDICTABLE. */ |
| addr = add_reg_for_lit(s, a->rn, offset); |
| tmp = tcg_temp_new_i32(); |
| if (a->l) { |
| gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN); |
| vfp_store_reg32(tmp, a->vd); |
| } else { |
| vfp_load_reg32(tmp, a->vd); |
| gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN); |
| } |
| tcg_temp_free_i32(tmp); |
| tcg_temp_free_i32(addr); |
| |
| return true; |
| } |
| |
| static bool trans_VLDR_VSTR_dp(DisasContext *s, arg_VLDR_VSTR_dp *a) |
| { |
| uint32_t offset; |
| TCGv_i32 addr; |
| TCGv_i64 tmp; |
| |
| /* Note that this does not require support for double arithmetic. */ |
| if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| offset = a->imm << 2; |
| if (!a->u) { |
| offset = -offset; |
| } |
| |
| /* For thumb, use of PC is UNPREDICTABLE. */ |
| addr = add_reg_for_lit(s, a->rn, offset); |
| tmp = tcg_temp_new_i64(); |
| if (a->l) { |
| gen_aa32_ld_i64(s, tmp, addr, get_mem_index(s), MO_UQ | MO_ALIGN_4); |
| vfp_store_reg64(tmp, a->vd); |
| } else { |
| vfp_load_reg64(tmp, a->vd); |
| gen_aa32_st_i64(s, tmp, addr, get_mem_index(s), MO_UQ | MO_ALIGN_4); |
| } |
| tcg_temp_free_i64(tmp); |
| tcg_temp_free_i32(addr); |
| |
| return true; |
| } |
| |
| static bool trans_VLDM_VSTM_sp(DisasContext *s, arg_VLDM_VSTM_sp *a) |
| { |
| uint32_t offset; |
| TCGv_i32 addr, tmp; |
| int i, n; |
| |
| if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) { |
| return false; |
| } |
| |
| n = a->imm; |
| |
| if (n == 0 || (a->vd + n) > 32) { |
| /* |
| * UNPREDICTABLE cases for bad immediates: we choose to |
| * UNDEF to avoid generating huge numbers of TCG ops |
| */ |
| return false; |
| } |
| if (a->rn == 15 && a->w) { |
| /* writeback to PC is UNPREDICTABLE, we choose to UNDEF */ |
| return false; |
| } |
| |
| s->eci_handled = true; |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| /* For thumb, use of PC is UNPREDICTABLE. */ |
| addr = add_reg_for_lit(s, a->rn, 0); |
| if (a->p) { |
| /* pre-decrement */ |
| tcg_gen_addi_i32(addr, addr, -(a->imm << 2)); |
| } |
| |
| if (s->v8m_stackcheck && a->rn == 13 && a->w) { |
| /* |
| * Here 'addr' is the lowest address we will store to, |
| * and is either the old SP (if post-increment) or |
| * the new SP (if pre-decrement). For post-increment |
| * where the old value is below the limit and the new |
| * value is above, it is UNKNOWN whether the limit check |
| * triggers; we choose to trigger. |
| */ |
| gen_helper_v8m_stackcheck(cpu_env, addr); |
| } |
| |
| offset = 4; |
| tmp = tcg_temp_new_i32(); |
| for (i = 0; i < n; i++) { |
| if (a->l) { |
| /* load */ |
| gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN); |
| vfp_store_reg32(tmp, a->vd + i); |
| } else { |
| /* store */ |
| vfp_load_reg32(tmp, a->vd + i); |
| gen_aa32_st_i32(s, tmp, addr, get_mem_index(s), MO_UL | MO_ALIGN); |
| } |
| tcg_gen_addi_i32(addr, addr, offset); |
| } |
| tcg_temp_free_i32(tmp); |
| if (a->w) { |
| /* writeback */ |
| if (a->p) { |
| offset = -offset * n; |
| tcg_gen_addi_i32(addr, addr, offset); |
| } |
| store_reg(s, a->rn, addr); |
| } else { |
| tcg_temp_free_i32(addr); |
| } |
| |
| clear_eci_state(s); |
| return true; |
| } |
| |
| static bool trans_VLDM_VSTM_dp(DisasContext *s, arg_VLDM_VSTM_dp *a) |
| { |
| uint32_t offset; |
| TCGv_i32 addr; |
| TCGv_i64 tmp; |
| int i, n; |
| |
| /* Note that this does not require support for double arithmetic. */ |
| if (!dc_isar_feature(aa32_fpsp_v2, s) && !dc_isar_feature(aa32_mve, s)) { |
| return false; |
| } |
| |
| n = a->imm >> 1; |
| |
| if (n == 0 || (a->vd + n) > 32 || n > 16) { |
| /* |
| * UNPREDICTABLE cases for bad immediates: we choose to |
| * UNDEF to avoid generating huge numbers of TCG ops |
| */ |
| return false; |
| } |
| if (a->rn == 15 && a->w) { |
| /* writeback to PC is UNPREDICTABLE, we choose to UNDEF */ |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd + n) > 16) { |
| return false; |
| } |
| |
| s->eci_handled = true; |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| /* For thumb, use of PC is UNPREDICTABLE. */ |
| addr = add_reg_for_lit(s, a->rn, 0); |
| if (a->p) { |
| /* pre-decrement */ |
| tcg_gen_addi_i32(addr, addr, -(a->imm << 2)); |
| } |
| |
| if (s->v8m_stackcheck && a->rn == 13 && a->w) { |
| /* |
| * Here 'addr' is the lowest address we will store to, |
| * and is either the old SP (if post-increment) or |
| * the new SP (if pre-decrement). For post-increment |
| * where the old value is below the limit and the new |
| * value is above, it is UNKNOWN whether the limit check |
| * triggers; we choose to trigger. |
| */ |
| gen_helper_v8m_stackcheck(cpu_env, addr); |
| } |
| |
| offset = 8; |
| tmp = tcg_temp_new_i64(); |
| for (i = 0; i < n; i++) { |
| if (a->l) { |
| /* load */ |
| gen_aa32_ld_i64(s, tmp, addr, get_mem_index(s), MO_UQ | MO_ALIGN_4); |
| vfp_store_reg64(tmp, a->vd + i); |
| } else { |
| /* store */ |
| vfp_load_reg64(tmp, a->vd + i); |
| gen_aa32_st_i64(s, tmp, addr, get_mem_index(s), MO_UQ | MO_ALIGN_4); |
| } |
| tcg_gen_addi_i32(addr, addr, offset); |
| } |
| tcg_temp_free_i64(tmp); |
| if (a->w) { |
| /* writeback */ |
| if (a->p) { |
| offset = -offset * n; |
| } else if (a->imm & 1) { |
| offset = 4; |
| } else { |
| offset = 0; |
| } |
| |
| if (offset != 0) { |
| tcg_gen_addi_i32(addr, addr, offset); |
| } |
| store_reg(s, a->rn, addr); |
| } else { |
| tcg_temp_free_i32(addr); |
| } |
| |
| clear_eci_state(s); |
| return true; |
| } |
| |
| /* |
| * Types for callbacks for do_vfp_3op_sp() and do_vfp_3op_dp(). |
| * The callback should emit code to write a value to vd. If |
| * do_vfp_3op_{sp,dp}() was passed reads_vd then the TCGv vd |
| * will contain the old value of the relevant VFP register; |
| * otherwise it must be written to only. |
| */ |
| typedef void VFPGen3OpSPFn(TCGv_i32 vd, |
| TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst); |
| typedef void VFPGen3OpDPFn(TCGv_i64 vd, |
| TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst); |
| |
| /* |
| * Types for callbacks for do_vfp_2op_sp() and do_vfp_2op_dp(). |
| * The callback should emit code to write a value to vd (which |
| * should be written to only). |
| */ |
| typedef void VFPGen2OpSPFn(TCGv_i32 vd, TCGv_i32 vm); |
| typedef void VFPGen2OpDPFn(TCGv_i64 vd, TCGv_i64 vm); |
| |
| /* |
| * Return true if the specified S reg is in a scalar bank |
| * (ie if it is s0..s7) |
| */ |
| static inline bool vfp_sreg_is_scalar(int reg) |
| { |
| return (reg & 0x18) == 0; |
| } |
| |
| /* |
| * Return true if the specified D reg is in a scalar bank |
| * (ie if it is d0..d3 or d16..d19) |
| */ |
| static inline bool vfp_dreg_is_scalar(int reg) |
| { |
| return (reg & 0xc) == 0; |
| } |
| |
| /* |
| * Advance the S reg number forwards by delta within its bank |
| * (ie increment the low 3 bits but leave the rest the same) |
| */ |
| static inline int vfp_advance_sreg(int reg, int delta) |
| { |
| return ((reg + delta) & 0x7) | (reg & ~0x7); |
| } |
| |
| /* |
| * Advance the D reg number forwards by delta within its bank |
| * (ie increment the low 2 bits but leave the rest the same) |
| */ |
| static inline int vfp_advance_dreg(int reg, int delta) |
| { |
| return ((reg + delta) & 0x3) | (reg & ~0x3); |
| } |
| |
| /* |
| * Perform a 3-operand VFP data processing instruction. fn is the |
| * callback to do the actual operation; this function deals with the |
| * code to handle looping around for VFP vector processing. |
| */ |
| static bool do_vfp_3op_sp(DisasContext *s, VFPGen3OpSPFn *fn, |
| int vd, int vn, int vm, bool reads_vd) |
| { |
| uint32_t delta_m = 0; |
| uint32_t delta_d = 0; |
| int veclen = s->vec_len; |
| TCGv_i32 f0, f1, fd; |
| TCGv_ptr fpst; |
| |
| if (!dc_isar_feature(aa32_fpsp_v2, s)) { |
| return false; |
| } |
| |
| if (!dc_isar_feature(aa32_fpshvec, s) && |
| (veclen != 0 || s->vec_stride != 0)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| if (veclen > 0) { |
| /* Figure out what type of vector operation this is. */ |
| if (vfp_sreg_is_scalar(vd)) { |
| /* scalar */ |
| veclen = 0; |
| } else { |
| delta_d = s->vec_stride + 1; |
| |
| if (vfp_sreg_is_scalar(vm)) { |
| /* mixed scalar/vector */ |
| delta_m = 0; |
| } else { |
| /* vector */ |
| delta_m = delta_d; |
| } |
| } |
| } |
| |
| f0 = tcg_temp_new_i32(); |
| f1 = tcg_temp_new_i32(); |
| fd = tcg_temp_new_i32(); |
| fpst = fpstatus_ptr(FPST_FPCR); |
| |
| vfp_load_reg32(f0, vn); |
| vfp_load_reg32(f1, vm); |
| |
| for (;;) { |
| if (reads_vd) { |
| vfp_load_reg32(fd, vd); |
| } |
| fn(fd, f0, f1, fpst); |
| vfp_store_reg32(fd, vd); |
| |
| if (veclen == 0) { |
| break; |
| } |
| |
| /* Set up the operands for the next iteration */ |
| veclen--; |
| vd = vfp_advance_sreg(vd, delta_d); |
| vn = vfp_advance_sreg(vn, delta_d); |
| vfp_load_reg32(f0, vn); |
| if (delta_m) { |
| vm = vfp_advance_sreg(vm, delta_m); |
| vfp_load_reg32(f1, vm); |
| } |
| } |
| |
| tcg_temp_free_i32(f0); |
| tcg_temp_free_i32(f1); |
| tcg_temp_free_i32(fd); |
| tcg_temp_free_ptr(fpst); |
| |
| return true; |
| } |
| |
| static bool do_vfp_3op_hp(DisasContext *s, VFPGen3OpSPFn *fn, |
| int vd, int vn, int vm, bool reads_vd) |
| { |
| /* |
| * Do a half-precision operation. Functionally this is |
| * the same as do_vfp_3op_sp(), except: |
| * - it uses the FPST_FPCR_F16 |
| * - it doesn't need the VFP vector handling (fp16 is a |
| * v8 feature, and in v8 VFP vectors don't exist) |
| * - it does the aa32_fp16_arith feature test |
| */ |
| TCGv_i32 f0, f1, fd; |
| TCGv_ptr fpst; |
| |
| if (!dc_isar_feature(aa32_fp16_arith, s)) { |
| return false; |
| } |
| |
| if (s->vec_len != 0 || s->vec_stride != 0) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| f0 = tcg_temp_new_i32(); |
| f1 = tcg_temp_new_i32(); |
| fd = tcg_temp_new_i32(); |
| fpst = fpstatus_ptr(FPST_FPCR_F16); |
| |
| vfp_load_reg32(f0, vn); |
| vfp_load_reg32(f1, vm); |
| |
| if (reads_vd) { |
| vfp_load_reg32(fd, vd); |
| } |
| fn(fd, f0, f1, fpst); |
| vfp_store_reg32(fd, vd); |
| |
| tcg_temp_free_i32(f0); |
| tcg_temp_free_i32(f1); |
| tcg_temp_free_i32(fd); |
| tcg_temp_free_ptr(fpst); |
| |
| return true; |
| } |
| |
| static bool do_vfp_3op_dp(DisasContext *s, VFPGen3OpDPFn *fn, |
| int vd, int vn, int vm, bool reads_vd) |
| { |
| uint32_t delta_m = 0; |
| uint32_t delta_d = 0; |
| int veclen = s->vec_len; |
| TCGv_i64 f0, f1, fd; |
| TCGv_ptr fpst; |
| |
| if (!dc_isar_feature(aa32_fpdp_v2, s)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && ((vd | vn | vm) & 0x10)) { |
| return false; |
| } |
| |
| if (!dc_isar_feature(aa32_fpshvec, s) && |
| (veclen != 0 || s->vec_stride != 0)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| if (veclen > 0) { |
| /* Figure out what type of vector operation this is. */ |
| if (vfp_dreg_is_scalar(vd)) { |
| /* scalar */ |
| veclen = 0; |
| } else { |
| delta_d = (s->vec_stride >> 1) + 1; |
| |
| if (vfp_dreg_is_scalar(vm)) { |
| /* mixed scalar/vector */ |
| delta_m = 0; |
| } else { |
| /* vector */ |
| delta_m = delta_d; |
| } |
| } |
| } |
| |
| f0 = tcg_temp_new_i64(); |
| f1 = tcg_temp_new_i64(); |
| fd = tcg_temp_new_i64(); |
| fpst = fpstatus_ptr(FPST_FPCR); |
| |
| vfp_load_reg64(f0, vn); |
| vfp_load_reg64(f1, vm); |
| |
| for (;;) { |
| if (reads_vd) { |
| vfp_load_reg64(fd, vd); |
| } |
| fn(fd, f0, f1, fpst); |
| vfp_store_reg64(fd, vd); |
| |
| if (veclen == 0) { |
| break; |
| } |
| /* Set up the operands for the next iteration */ |
| veclen--; |
| vd = vfp_advance_dreg(vd, delta_d); |
| vn = vfp_advance_dreg(vn, delta_d); |
| vfp_load_reg64(f0, vn); |
| if (delta_m) { |
| vm = vfp_advance_dreg(vm, delta_m); |
| vfp_load_reg64(f1, vm); |
| } |
| } |
| |
| tcg_temp_free_i64(f0); |
| tcg_temp_free_i64(f1); |
| tcg_temp_free_i64(fd); |
| tcg_temp_free_ptr(fpst); |
| |
| return true; |
| } |
| |
| static bool do_vfp_2op_sp(DisasContext *s, VFPGen2OpSPFn *fn, int vd, int vm) |
| { |
| uint32_t delta_m = 0; |
| uint32_t delta_d = 0; |
| int veclen = s->vec_len; |
| TCGv_i32 f0, fd; |
| |
| /* Note that the caller must check the aa32_fpsp_v2 feature. */ |
| |
| if (!dc_isar_feature(aa32_fpshvec, s) && |
| (veclen != 0 || s->vec_stride != 0)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| if (veclen > 0) { |
| /* Figure out what type of vector operation this is. */ |
| if (vfp_sreg_is_scalar(vd)) { |
| /* scalar */ |
| veclen = 0; |
| } else { |
| delta_d = s->vec_stride + 1; |
| |
| if (vfp_sreg_is_scalar(vm)) { |
| /* mixed scalar/vector */ |
| delta_m = 0; |
| } else { |
| /* vector */ |
| delta_m = delta_d; |
| } |
| } |
| } |
| |
| f0 = tcg_temp_new_i32(); |
| fd = tcg_temp_new_i32(); |
| |
| vfp_load_reg32(f0, vm); |
| |
| for (;;) { |
| fn(fd, f0); |
| vfp_store_reg32(fd, vd); |
| |
| if (veclen == 0) { |
| break; |
| } |
| |
| if (delta_m == 0) { |
| /* single source one-many */ |
| while (veclen--) { |
| vd = vfp_advance_sreg(vd, delta_d); |
| vfp_store_reg32(fd, vd); |
| } |
| break; |
| } |
| |
| /* Set up the operands for the next iteration */ |
| veclen--; |
| vd = vfp_advance_sreg(vd, delta_d); |
| vm = vfp_advance_sreg(vm, delta_m); |
| vfp_load_reg32(f0, vm); |
| } |
| |
| tcg_temp_free_i32(f0); |
| tcg_temp_free_i32(fd); |
| |
| return true; |
| } |
| |
| static bool do_vfp_2op_hp(DisasContext *s, VFPGen2OpSPFn *fn, int vd, int vm) |
| { |
| /* |
| * Do a half-precision operation. Functionally this is |
| * the same as do_vfp_2op_sp(), except: |
| * - it doesn't need the VFP vector handling (fp16 is a |
| * v8 feature, and in v8 VFP vectors don't exist) |
| * - it does the aa32_fp16_arith feature test |
| */ |
| TCGv_i32 f0; |
| |
| /* Note that the caller must check the aa32_fp16_arith feature */ |
| |
| if (!dc_isar_feature(aa32_fp16_arith, s)) { |
| return false; |
| } |
| |
| if (s->vec_len != 0 || s->vec_stride != 0) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| f0 = tcg_temp_new_i32(); |
| vfp_load_reg32(f0, vm); |
| fn(f0, f0); |
| vfp_store_reg32(f0, vd); |
| tcg_temp_free_i32(f0); |
| |
| return true; |
| } |
| |
| static bool do_vfp_2op_dp(DisasContext *s, VFPGen2OpDPFn *fn, int vd, int vm) |
| { |
| uint32_t delta_m = 0; |
| uint32_t delta_d = 0; |
| int veclen = s->vec_len; |
| TCGv_i64 f0, fd; |
| |
| /* Note that the caller must check the aa32_fpdp_v2 feature. */ |
| |
| /* UNDEF accesses to D16-D31 if they don't exist */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && ((vd | vm) & 0x10)) { |
| return false; |
| } |
| |
| if (!dc_isar_feature(aa32_fpshvec, s) && |
| (veclen != 0 || s->vec_stride != 0)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| if (veclen > 0) { |
| /* Figure out what type of vector operation this is. */ |
| if (vfp_dreg_is_scalar(vd)) { |
| /* scalar */ |
| veclen = 0; |
| } else { |
| delta_d = (s->vec_stride >> 1) + 1; |
| |
| if (vfp_dreg_is_scalar(vm)) { |
| /* mixed scalar/vector */ |
| delta_m = 0; |
| } else { |
| /* vector */ |
| delta_m = delta_d; |
| } |
| } |
| } |
| |
| f0 = tcg_temp_new_i64(); |
| fd = tcg_temp_new_i64(); |
| |
| vfp_load_reg64(f0, vm); |
| |
| for (;;) { |
| fn(fd, f0); |
| vfp_store_reg64(fd, vd); |
| |
| if (veclen == 0) { |
| break; |
| } |
| |
| if (delta_m == 0) { |
| /* single source one-many */ |
| while (veclen--) { |
| vd = vfp_advance_dreg(vd, delta_d); |
| vfp_store_reg64(fd, vd); |
| } |
| break; |
| } |
| |
| /* Set up the operands for the next iteration */ |
| veclen--; |
| vd = vfp_advance_dreg(vd, delta_d); |
| vd = vfp_advance_dreg(vm, delta_m); |
| vfp_load_reg64(f0, vm); |
| } |
| |
| tcg_temp_free_i64(f0); |
| tcg_temp_free_i64(fd); |
| |
| return true; |
| } |
| |
| static void gen_VMLA_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) |
| { |
| /* Note that order of inputs to the add matters for NaNs */ |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| |
| gen_helper_vfp_mulh(tmp, vn, vm, fpst); |
| gen_helper_vfp_addh(vd, vd, tmp, fpst); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| static bool trans_VMLA_hp(DisasContext *s, arg_VMLA_sp *a) |
| { |
| return do_vfp_3op_hp(s, gen_VMLA_hp, a->vd, a->vn, a->vm, true); |
| } |
| |
| static void gen_VMLA_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) |
| { |
| /* Note that order of inputs to the add matters for NaNs */ |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| |
| gen_helper_vfp_muls(tmp, vn, vm, fpst); |
| gen_helper_vfp_adds(vd, vd, tmp, fpst); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| static bool trans_VMLA_sp(DisasContext *s, arg_VMLA_sp *a) |
| { |
| return do_vfp_3op_sp(s, gen_VMLA_sp, a->vd, a->vn, a->vm, true); |
| } |
| |
| static void gen_VMLA_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst) |
| { |
| /* Note that order of inputs to the add matters for NaNs */ |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| |
| gen_helper_vfp_muld(tmp, vn, vm, fpst); |
| gen_helper_vfp_addd(vd, vd, tmp, fpst); |
| tcg_temp_free_i64(tmp); |
| } |
| |
| static bool trans_VMLA_dp(DisasContext *s, arg_VMLA_dp *a) |
| { |
| return do_vfp_3op_dp(s, gen_VMLA_dp, a->vd, a->vn, a->vm, true); |
| } |
| |
| static void gen_VMLS_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) |
| { |
| /* |
| * VMLS: vd = vd + -(vn * vm) |
| * Note that order of inputs to the add matters for NaNs. |
| */ |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| |
| gen_helper_vfp_mulh(tmp, vn, vm, fpst); |
| gen_helper_vfp_negh(tmp, tmp); |
| gen_helper_vfp_addh(vd, vd, tmp, fpst); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| static bool trans_VMLS_hp(DisasContext *s, arg_VMLS_sp *a) |
| { |
| return do_vfp_3op_hp(s, gen_VMLS_hp, a->vd, a->vn, a->vm, true); |
| } |
| |
| static void gen_VMLS_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) |
| { |
| /* |
| * VMLS: vd = vd + -(vn * vm) |
| * Note that order of inputs to the add matters for NaNs. |
| */ |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| |
| gen_helper_vfp_muls(tmp, vn, vm, fpst); |
| gen_helper_vfp_negs(tmp, tmp); |
| gen_helper_vfp_adds(vd, vd, tmp, fpst); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| static bool trans_VMLS_sp(DisasContext *s, arg_VMLS_sp *a) |
| { |
| return do_vfp_3op_sp(s, gen_VMLS_sp, a->vd, a->vn, a->vm, true); |
| } |
| |
| static void gen_VMLS_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst) |
| { |
| /* |
| * VMLS: vd = vd + -(vn * vm) |
| * Note that order of inputs to the add matters for NaNs. |
| */ |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| |
| gen_helper_vfp_muld(tmp, vn, vm, fpst); |
| gen_helper_vfp_negd(tmp, tmp); |
| gen_helper_vfp_addd(vd, vd, tmp, fpst); |
| tcg_temp_free_i64(tmp); |
| } |
| |
| static bool trans_VMLS_dp(DisasContext *s, arg_VMLS_dp *a) |
| { |
| return do_vfp_3op_dp(s, gen_VMLS_dp, a->vd, a->vn, a->vm, true); |
| } |
| |
| static void gen_VNMLS_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) |
| { |
| /* |
| * VNMLS: -fd + (fn * fm) |
| * Note that it isn't valid to replace (-A + B) with (B - A) or similar |
| * plausible looking simplifications because this will give wrong results |
| * for NaNs. |
| */ |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| |
| gen_helper_vfp_mulh(tmp, vn, vm, fpst); |
| gen_helper_vfp_negh(vd, vd); |
| gen_helper_vfp_addh(vd, vd, tmp, fpst); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| static bool trans_VNMLS_hp(DisasContext *s, arg_VNMLS_sp *a) |
| { |
| return do_vfp_3op_hp(s, gen_VNMLS_hp, a->vd, a->vn, a->vm, true); |
| } |
| |
| static void gen_VNMLS_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) |
| { |
| /* |
| * VNMLS: -fd + (fn * fm) |
| * Note that it isn't valid to replace (-A + B) with (B - A) or similar |
| * plausible looking simplifications because this will give wrong results |
| * for NaNs. |
| */ |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| |
| gen_helper_vfp_muls(tmp, vn, vm, fpst); |
| gen_helper_vfp_negs(vd, vd); |
| gen_helper_vfp_adds(vd, vd, tmp, fpst); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| static bool trans_VNMLS_sp(DisasContext *s, arg_VNMLS_sp *a) |
| { |
| return do_vfp_3op_sp(s, gen_VNMLS_sp, a->vd, a->vn, a->vm, true); |
| } |
| |
| static void gen_VNMLS_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst) |
| { |
| /* |
| * VNMLS: -fd + (fn * fm) |
| * Note that it isn't valid to replace (-A + B) with (B - A) or similar |
| * plausible looking simplifications because this will give wrong results |
| * for NaNs. |
| */ |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| |
| gen_helper_vfp_muld(tmp, vn, vm, fpst); |
| gen_helper_vfp_negd(vd, vd); |
| gen_helper_vfp_addd(vd, vd, tmp, fpst); |
| tcg_temp_free_i64(tmp); |
| } |
| |
| static bool trans_VNMLS_dp(DisasContext *s, arg_VNMLS_dp *a) |
| { |
| return do_vfp_3op_dp(s, gen_VNMLS_dp, a->vd, a->vn, a->vm, true); |
| } |
| |
| static void gen_VNMLA_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) |
| { |
| /* VNMLA: -fd + -(fn * fm) */ |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| |
| gen_helper_vfp_mulh(tmp, vn, vm, fpst); |
| gen_helper_vfp_negh(tmp, tmp); |
| gen_helper_vfp_negh(vd, vd); |
| gen_helper_vfp_addh(vd, vd, tmp, fpst); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| static bool trans_VNMLA_hp(DisasContext *s, arg_VNMLA_sp *a) |
| { |
| return do_vfp_3op_hp(s, gen_VNMLA_hp, a->vd, a->vn, a->vm, true); |
| } |
| |
| static void gen_VNMLA_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) |
| { |
| /* VNMLA: -fd + -(fn * fm) */ |
| TCGv_i32 tmp = tcg_temp_new_i32(); |
| |
| gen_helper_vfp_muls(tmp, vn, vm, fpst); |
| gen_helper_vfp_negs(tmp, tmp); |
| gen_helper_vfp_negs(vd, vd); |
| gen_helper_vfp_adds(vd, vd, tmp, fpst); |
| tcg_temp_free_i32(tmp); |
| } |
| |
| static bool trans_VNMLA_sp(DisasContext *s, arg_VNMLA_sp *a) |
| { |
| return do_vfp_3op_sp(s, gen_VNMLA_sp, a->vd, a->vn, a->vm, true); |
| } |
| |
| static void gen_VNMLA_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst) |
| { |
| /* VNMLA: -fd + (fn * fm) */ |
| TCGv_i64 tmp = tcg_temp_new_i64(); |
| |
| gen_helper_vfp_muld(tmp, vn, vm, fpst); |
| gen_helper_vfp_negd(tmp, tmp); |
| gen_helper_vfp_negd(vd, vd); |
| gen_helper_vfp_addd(vd, vd, tmp, fpst); |
| tcg_temp_free_i64(tmp); |
| } |
| |
| static bool trans_VNMLA_dp(DisasContext *s, arg_VNMLA_dp *a) |
| { |
| return do_vfp_3op_dp(s, gen_VNMLA_dp, a->vd, a->vn, a->vm, true); |
| } |
| |
| static bool trans_VMUL_hp(DisasContext *s, arg_VMUL_sp *a) |
| { |
| return do_vfp_3op_hp(s, gen_helper_vfp_mulh, a->vd, a->vn, a->vm, false); |
| } |
| |
| static bool trans_VMUL_sp(DisasContext *s, arg_VMUL_sp *a) |
| { |
| return do_vfp_3op_sp(s, gen_helper_vfp_muls, a->vd, a->vn, a->vm, false); |
| } |
| |
| static bool trans_VMUL_dp(DisasContext *s, arg_VMUL_dp *a) |
| { |
| return do_vfp_3op_dp(s, gen_helper_vfp_muld, a->vd, a->vn, a->vm, false); |
| } |
| |
| static void gen_VNMUL_hp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) |
| { |
| /* VNMUL: -(fn * fm) */ |
| gen_helper_vfp_mulh(vd, vn, vm, fpst); |
| gen_helper_vfp_negh(vd, vd); |
| } |
| |
| static bool trans_VNMUL_hp(DisasContext *s, arg_VNMUL_sp *a) |
| { |
| return do_vfp_3op_hp(s, gen_VNMUL_hp, a->vd, a->vn, a->vm, false); |
| } |
| |
| static void gen_VNMUL_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst) |
| { |
| /* VNMUL: -(fn * fm) */ |
| gen_helper_vfp_muls(vd, vn, vm, fpst); |
| gen_helper_vfp_negs(vd, vd); |
| } |
| |
| static bool trans_VNMUL_sp(DisasContext *s, arg_VNMUL_sp *a) |
| { |
| return do_vfp_3op_sp(s, gen_VNMUL_sp, a->vd, a->vn, a->vm, false); |
| } |
| |
| static void gen_VNMUL_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst) |
| { |
| /* VNMUL: -(fn * fm) */ |
| gen_helper_vfp_muld(vd, vn, vm, fpst); |
| gen_helper_vfp_negd(vd, vd); |
| } |
| |
| static bool trans_VNMUL_dp(DisasContext *s, arg_VNMUL_dp *a) |
| { |
| return do_vfp_3op_dp(s, gen_VNMUL_dp, a->vd, a->vn, a->vm, false); |
| } |
| |
| static bool trans_VADD_hp(DisasContext *s, arg_VADD_sp *a) |
| { |
| return do_vfp_3op_hp(s, gen_helper_vfp_addh, a->vd, a->vn, a->vm, false); |
| } |
| |
| static bool trans_VADD_sp(DisasContext *s, arg_VADD_sp *a) |
| { |
| return do_vfp_3op_sp(s, gen_helper_vfp_adds, a->vd, a->vn, a->vm, false); |
| } |
| |
| static bool trans_VADD_dp(DisasContext *s, arg_VADD_dp *a) |
| { |
| return do_vfp_3op_dp(s, gen_helper_vfp_addd, a->vd, a->vn, a->vm, false); |
| } |
| |
| static bool trans_VSUB_hp(DisasContext *s, arg_VSUB_sp *a) |
| { |
| return do_vfp_3op_hp(s, gen_helper_vfp_subh, a->vd, a->vn, a->vm, false); |
| } |
| |
| static bool trans_VSUB_sp(DisasContext *s, arg_VSUB_sp *a) |
| { |
| return do_vfp_3op_sp(s, gen_helper_vfp_subs, a->vd, a->vn, a->vm, false); |
| } |
| |
| static bool trans_VSUB_dp(DisasContext *s, arg_VSUB_dp *a) |
| { |
| return do_vfp_3op_dp(s, gen_helper_vfp_subd, a->vd, a->vn, a->vm, false); |
| } |
| |
| static bool trans_VDIV_hp(DisasContext *s, arg_VDIV_sp *a) |
| { |
| return do_vfp_3op_hp(s, gen_helper_vfp_divh, a->vd, a->vn, a->vm, false); |
| } |
| |
| static bool trans_VDIV_sp(DisasContext *s, arg_VDIV_sp *a) |
| { |
| return do_vfp_3op_sp(s, gen_helper_vfp_divs, a->vd, a->vn, a->vm, false); |
| } |
| |
| static bool trans_VDIV_dp(DisasContext *s, arg_VDIV_dp *a) |
| { |
| return do_vfp_3op_dp(s, gen_helper_vfp_divd, a->vd, a->vn, a->vm, false); |
| } |
| |
| static bool trans_VMINNM_hp(DisasContext *s, arg_VMINNM_sp *a) |
| { |
| if (!dc_isar_feature(aa32_vminmaxnm, s)) { |
| return false; |
| } |
| return do_vfp_3op_hp(s, gen_helper_vfp_minnumh, |
| a->vd, a->vn, a->vm, false); |
| } |
| |
| static bool trans_VMAXNM_hp(DisasContext *s, arg_VMAXNM_sp *a) |
| { |
| if (!dc_isar_feature(aa32_vminmaxnm, s)) { |
| return false; |
| } |
| return do_vfp_3op_hp(s, gen_helper_vfp_maxnumh, |
| a->vd, a->vn, a->vm, false); |
| } |
| |
| static bool trans_VMINNM_sp(DisasContext *s, arg_VMINNM_sp *a) |
| { |
| if (!dc_isar_feature(aa32_vminmaxnm, s)) { |
| return false; |
| } |
| return do_vfp_3op_sp(s, gen_helper_vfp_minnums, |
| a->vd, a->vn, a->vm, false); |
| } |
| |
| static bool trans_VMAXNM_sp(DisasContext *s, arg_VMAXNM_sp *a) |
| { |
| if (!dc_isar_feature(aa32_vminmaxnm, s)) { |
| return false; |
| } |
| return do_vfp_3op_sp(s, gen_helper_vfp_maxnums, |
| a->vd, a->vn, a->vm, false); |
| } |
| |
| static bool trans_VMINNM_dp(DisasContext *s, arg_VMINNM_dp *a) |
| { |
| if (!dc_isar_feature(aa32_vminmaxnm, s)) { |
| return false; |
| } |
| return do_vfp_3op_dp(s, gen_helper_vfp_minnumd, |
| a->vd, a->vn, a->vm, false); |
| } |
| |
| static bool trans_VMAXNM_dp(DisasContext *s, arg_VMAXNM_dp *a) |
| { |
| if (!dc_isar_feature(aa32_vminmaxnm, s)) { |
| return false; |
| } |
| return do_vfp_3op_dp(s, gen_helper_vfp_maxnumd, |
| a->vd, a->vn, a->vm, false); |
| } |
| |
| static bool do_vfm_hp(DisasContext *s, arg_VFMA_sp *a, bool neg_n, bool neg_d) |
| { |
| /* |
| * VFNMA : fd = muladd(-fd, fn, fm) |
| * VFNMS : fd = muladd(-fd, -fn, fm) |
| * VFMA : fd = muladd( fd, fn, fm) |
| * VFMS : fd = muladd( fd, -fn, fm) |
| * |
| * These are fused multiply-add, and must be done as one floating |
| * point operation with no rounding between the multiplication and |
| * addition steps. NB that doing the negations here as separate |
| * steps is correct : an input NaN should come out with its sign |
| * bit flipped if it is a negated-input. |
| */ |
| TCGv_ptr fpst; |
| TCGv_i32 vn, vm, vd; |
| |
| /* |
| * Present in VFPv4 only, and only with the FP16 extension. |
| * Note that we can't rely on the SIMDFMAC check alone, because |
| * in a Neon-no-VFP core that ID register field will be non-zero. |
| */ |
| if (!dc_isar_feature(aa32_fp16_arith, s) || |
| !dc_isar_feature(aa32_simdfmac, s) || |
| !dc_isar_feature(aa32_fpsp_v2, s)) { |
| return false; |
| } |
| |
| if (s->vec_len != 0 || s->vec_stride != 0) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| vn = tcg_temp_new_i32(); |
| vm = tcg_temp_new_i32(); |
| vd = tcg_temp_new_i32(); |
| |
| vfp_load_reg32(vn, a->vn); |
| vfp_load_reg32(vm, a->vm); |
| if (neg_n) { |
| /* VFNMS, VFMS */ |
| gen_helper_vfp_negh(vn, vn); |
| } |
| vfp_load_reg32(vd, a->vd); |
| if (neg_d) { |
| /* VFNMA, VFNMS */ |
| gen_helper_vfp_negh(vd, vd); |
| } |
| fpst = fpstatus_ptr(FPST_FPCR_F16); |
| gen_helper_vfp_muladdh(vd, vn, vm, vd, fpst); |
| vfp_store_reg32(vd, a->vd); |
| |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i32(vn); |
| tcg_temp_free_i32(vm); |
| tcg_temp_free_i32(vd); |
| |
| return true; |
| } |
| |
| static bool do_vfm_sp(DisasContext *s, arg_VFMA_sp *a, bool neg_n, bool neg_d) |
| { |
| /* |
| * VFNMA : fd = muladd(-fd, fn, fm) |
| * VFNMS : fd = muladd(-fd, -fn, fm) |
| * VFMA : fd = muladd( fd, fn, fm) |
| * VFMS : fd = muladd( fd, -fn, fm) |
| * |
| * These are fused multiply-add, and must be done as one floating |
| * point operation with no rounding between the multiplication and |
| * addition steps. NB that doing the negations here as separate |
| * steps is correct : an input NaN should come out with its sign |
| * bit flipped if it is a negated-input. |
| */ |
| TCGv_ptr fpst; |
| TCGv_i32 vn, vm, vd; |
| |
| /* |
| * Present in VFPv4 only. |
| * Note that we can't rely on the SIMDFMAC check alone, because |
| * in a Neon-no-VFP core that ID register field will be non-zero. |
| */ |
| if (!dc_isar_feature(aa32_simdfmac, s) || |
| !dc_isar_feature(aa32_fpsp_v2, s)) { |
| return false; |
| } |
| /* |
| * In v7A, UNPREDICTABLE with non-zero vector length/stride; from |
| * v8A, must UNDEF. We choose to UNDEF for both v7A and v8A. |
| */ |
| if (s->vec_len != 0 || s->vec_stride != 0) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| vn = tcg_temp_new_i32(); |
| vm = tcg_temp_new_i32(); |
| vd = tcg_temp_new_i32(); |
| |
| vfp_load_reg32(vn, a->vn); |
| vfp_load_reg32(vm, a->vm); |
| if (neg_n) { |
| /* VFNMS, VFMS */ |
| gen_helper_vfp_negs(vn, vn); |
| } |
| vfp_load_reg32(vd, a->vd); |
| if (neg_d) { |
| /* VFNMA, VFNMS */ |
| gen_helper_vfp_negs(vd, vd); |
| } |
| fpst = fpstatus_ptr(FPST_FPCR); |
| gen_helper_vfp_muladds(vd, vn, vm, vd, fpst); |
| vfp_store_reg32(vd, a->vd); |
| |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i32(vn); |
| tcg_temp_free_i32(vm); |
| tcg_temp_free_i32(vd); |
| |
| return true; |
| } |
| |
| static bool do_vfm_dp(DisasContext *s, arg_VFMA_dp *a, bool neg_n, bool neg_d) |
| { |
| /* |
| * VFNMA : fd = muladd(-fd, fn, fm) |
| * VFNMS : fd = muladd(-fd, -fn, fm) |
| * VFMA : fd = muladd( fd, fn, fm) |
| * VFMS : fd = muladd( fd, -fn, fm) |
| * |
| * These are fused multiply-add, and must be done as one floating |
| * point operation with no rounding between the multiplication and |
| * addition steps. NB that doing the negations here as separate |
| * steps is correct : an input NaN should come out with its sign |
| * bit flipped if it is a negated-input. |
| */ |
| TCGv_ptr fpst; |
| TCGv_i64 vn, vm, vd; |
| |
| /* |
| * Present in VFPv4 only. |
| * Note that we can't rely on the SIMDFMAC check alone, because |
| * in a Neon-no-VFP core that ID register field will be non-zero. |
| */ |
| if (!dc_isar_feature(aa32_simdfmac, s) || |
| !dc_isar_feature(aa32_fpdp_v2, s)) { |
| return false; |
| } |
| /* |
| * In v7A, UNPREDICTABLE with non-zero vector length/stride; from |
| * v8A, must UNDEF. We choose to UNDEF for both v7A and v8A. |
| */ |
| if (s->vec_len != 0 || s->vec_stride != 0) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist. */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && |
| ((a->vd | a->vn | a->vm) & 0x10)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| vn = tcg_temp_new_i64(); |
| vm = tcg_temp_new_i64(); |
| vd = tcg_temp_new_i64(); |
| |
| vfp_load_reg64(vn, a->vn); |
| vfp_load_reg64(vm, a->vm); |
| if (neg_n) { |
| /* VFNMS, VFMS */ |
| gen_helper_vfp_negd(vn, vn); |
| } |
| vfp_load_reg64(vd, a->vd); |
| if (neg_d) { |
| /* VFNMA, VFNMS */ |
| gen_helper_vfp_negd(vd, vd); |
| } |
| fpst = fpstatus_ptr(FPST_FPCR); |
| gen_helper_vfp_muladdd(vd, vn, vm, vd, fpst); |
| vfp_store_reg64(vd, a->vd); |
| |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i64(vn); |
| tcg_temp_free_i64(vm); |
| tcg_temp_free_i64(vd); |
| |
| return true; |
| } |
| |
| #define MAKE_ONE_VFM_TRANS_FN(INSN, PREC, NEGN, NEGD) \ |
| static bool trans_##INSN##_##PREC(DisasContext *s, \ |
| arg_##INSN##_##PREC *a) \ |
| { \ |
| return do_vfm_##PREC(s, a, NEGN, NEGD); \ |
| } |
| |
| #define MAKE_VFM_TRANS_FNS(PREC) \ |
| MAKE_ONE_VFM_TRANS_FN(VFMA, PREC, false, false) \ |
| MAKE_ONE_VFM_TRANS_FN(VFMS, PREC, true, false) \ |
| MAKE_ONE_VFM_TRANS_FN(VFNMA, PREC, false, true) \ |
| MAKE_ONE_VFM_TRANS_FN(VFNMS, PREC, true, true) |
| |
| MAKE_VFM_TRANS_FNS(hp) |
| MAKE_VFM_TRANS_FNS(sp) |
| MAKE_VFM_TRANS_FNS(dp) |
| |
| static bool trans_VMOV_imm_hp(DisasContext *s, arg_VMOV_imm_sp *a) |
| { |
| if (!dc_isar_feature(aa32_fp16_arith, s)) { |
| return false; |
| } |
| |
| if (s->vec_len != 0 || s->vec_stride != 0) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| vfp_store_reg32(tcg_constant_i32(vfp_expand_imm(MO_16, a->imm)), a->vd); |
| return true; |
| } |
| |
| static bool trans_VMOV_imm_sp(DisasContext *s, arg_VMOV_imm_sp *a) |
| { |
| uint32_t delta_d = 0; |
| int veclen = s->vec_len; |
| TCGv_i32 fd; |
| uint32_t vd; |
| |
| vd = a->vd; |
| |
| if (!dc_isar_feature(aa32_fpsp_v3, s)) { |
| return false; |
| } |
| |
| if (!dc_isar_feature(aa32_fpshvec, s) && |
| (veclen != 0 || s->vec_stride != 0)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| if (veclen > 0) { |
| /* Figure out what type of vector operation this is. */ |
| if (vfp_sreg_is_scalar(vd)) { |
| /* scalar */ |
| veclen = 0; |
| } else { |
| delta_d = s->vec_stride + 1; |
| } |
| } |
| |
| fd = tcg_constant_i32(vfp_expand_imm(MO_32, a->imm)); |
| |
| for (;;) { |
| vfp_store_reg32(fd, vd); |
| |
| if (veclen == 0) { |
| break; |
| } |
| |
| /* Set up the operands for the next iteration */ |
| veclen--; |
| vd = vfp_advance_sreg(vd, delta_d); |
| } |
| |
| return true; |
| } |
| |
| static bool trans_VMOV_imm_dp(DisasContext *s, arg_VMOV_imm_dp *a) |
| { |
| uint32_t delta_d = 0; |
| int veclen = s->vec_len; |
| TCGv_i64 fd; |
| uint32_t vd; |
| |
| vd = a->vd; |
| |
| if (!dc_isar_feature(aa32_fpdp_v3, s)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist. */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && (vd & 0x10)) { |
| return false; |
| } |
| |
| if (!dc_isar_feature(aa32_fpshvec, s) && |
| (veclen != 0 || s->vec_stride != 0)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| if (veclen > 0) { |
| /* Figure out what type of vector operation this is. */ |
| if (vfp_dreg_is_scalar(vd)) { |
| /* scalar */ |
| veclen = 0; |
| } else { |
| delta_d = (s->vec_stride >> 1) + 1; |
| } |
| } |
| |
| fd = tcg_constant_i64(vfp_expand_imm(MO_64, a->imm)); |
| |
| for (;;) { |
| vfp_store_reg64(fd, vd); |
| |
| if (veclen == 0) { |
| break; |
| } |
| |
| /* Set up the operands for the next iteration */ |
| veclen--; |
| vd = vfp_advance_dreg(vd, delta_d); |
| } |
| |
| return true; |
| } |
| |
| #define DO_VFP_2OP(INSN, PREC, FN, CHECK) \ |
| static bool trans_##INSN##_##PREC(DisasContext *s, \ |
| arg_##INSN##_##PREC *a) \ |
| { \ |
| if (!dc_isar_feature(CHECK, s)) { \ |
| return false; \ |
| } \ |
| return do_vfp_2op_##PREC(s, FN, a->vd, a->vm); \ |
| } |
| |
| #define DO_VFP_VMOV(INSN, PREC, FN) \ |
| static bool trans_##INSN##_##PREC(DisasContext *s, \ |
| arg_##INSN##_##PREC *a) \ |
| { \ |
| if (!dc_isar_feature(aa32_fp##PREC##_v2, s) && \ |
| !dc_isar_feature(aa32_mve, s)) { \ |
| return false; \ |
| } \ |
| return do_vfp_2op_##PREC(s, FN, a->vd, a->vm); \ |
| } |
| |
| DO_VFP_VMOV(VMOV_reg, sp, tcg_gen_mov_i32) |
| DO_VFP_VMOV(VMOV_reg, dp, tcg_gen_mov_i64) |
| |
| DO_VFP_2OP(VABS, hp, gen_helper_vfp_absh, aa32_fp16_arith) |
| DO_VFP_2OP(VABS, sp, gen_helper_vfp_abss, aa32_fpsp_v2) |
| DO_VFP_2OP(VABS, dp, gen_helper_vfp_absd, aa32_fpdp_v2) |
| |
| DO_VFP_2OP(VNEG, hp, gen_helper_vfp_negh, aa32_fp16_arith) |
| DO_VFP_2OP(VNEG, sp, gen_helper_vfp_negs, aa32_fpsp_v2) |
| DO_VFP_2OP(VNEG, dp, gen_helper_vfp_negd, aa32_fpdp_v2) |
| |
| static void gen_VSQRT_hp(TCGv_i32 vd, TCGv_i32 vm) |
| { |
| gen_helper_vfp_sqrth(vd, vm, cpu_env); |
| } |
| |
| static void gen_VSQRT_sp(TCGv_i32 vd, TCGv_i32 vm) |
| { |
| gen_helper_vfp_sqrts(vd, vm, cpu_env); |
| } |
| |
| static void gen_VSQRT_dp(TCGv_i64 vd, TCGv_i64 vm) |
| { |
| gen_helper_vfp_sqrtd(vd, vm, cpu_env); |
| } |
| |
| DO_VFP_2OP(VSQRT, hp, gen_VSQRT_hp, aa32_fp16_arith) |
| DO_VFP_2OP(VSQRT, sp, gen_VSQRT_sp, aa32_fpsp_v2) |
| DO_VFP_2OP(VSQRT, dp, gen_VSQRT_dp, aa32_fpdp_v2) |
| |
| static bool trans_VCMP_hp(DisasContext *s, arg_VCMP_sp *a) |
| { |
| TCGv_i32 vd, vm; |
| |
| if (!dc_isar_feature(aa32_fp16_arith, s)) { |
| return false; |
| } |
| |
| /* Vm/M bits must be zero for the Z variant */ |
| if (a->z && a->vm != 0) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| vd = tcg_temp_new_i32(); |
| vm = tcg_temp_new_i32(); |
| |
| vfp_load_reg32(vd, a->vd); |
| if (a->z) { |
| tcg_gen_movi_i32(vm, 0); |
| } else { |
| vfp_load_reg32(vm, a->vm); |
| } |
| |
| if (a->e) { |
| gen_helper_vfp_cmpeh(vd, vm, cpu_env); |
| } else { |
| gen_helper_vfp_cmph(vd, vm, cpu_env); |
| } |
| |
| tcg_temp_free_i32(vd); |
| tcg_temp_free_i32(vm); |
| |
| return true; |
| } |
| |
| static bool trans_VCMP_sp(DisasContext *s, arg_VCMP_sp *a) |
| { |
| TCGv_i32 vd, vm; |
| |
| if (!dc_isar_feature(aa32_fpsp_v2, s)) { |
| return false; |
| } |
| |
| /* Vm/M bits must be zero for the Z variant */ |
| if (a->z && a->vm != 0) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| vd = tcg_temp_new_i32(); |
| vm = tcg_temp_new_i32(); |
| |
| vfp_load_reg32(vd, a->vd); |
| if (a->z) { |
| tcg_gen_movi_i32(vm, 0); |
| } else { |
| vfp_load_reg32(vm, a->vm); |
| } |
| |
| if (a->e) { |
| gen_helper_vfp_cmpes(vd, vm, cpu_env); |
| } else { |
| gen_helper_vfp_cmps(vd, vm, cpu_env); |
| } |
| |
| tcg_temp_free_i32(vd); |
| tcg_temp_free_i32(vm); |
| |
| return true; |
| } |
| |
| static bool trans_VCMP_dp(DisasContext *s, arg_VCMP_dp *a) |
| { |
| TCGv_i64 vd, vm; |
| |
| if (!dc_isar_feature(aa32_fpdp_v2, s)) { |
| return false; |
| } |
| |
| /* Vm/M bits must be zero for the Z variant */ |
| if (a->z && a->vm != 0) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist. */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| vd = tcg_temp_new_i64(); |
| vm = tcg_temp_new_i64(); |
| |
| vfp_load_reg64(vd, a->vd); |
| if (a->z) { |
| tcg_gen_movi_i64(vm, 0); |
| } else { |
| vfp_load_reg64(vm, a->vm); |
| } |
| |
| if (a->e) { |
| gen_helper_vfp_cmped(vd, vm, cpu_env); |
| } else { |
| gen_helper_vfp_cmpd(vd, vm, cpu_env); |
| } |
| |
| tcg_temp_free_i64(vd); |
| tcg_temp_free_i64(vm); |
| |
| return true; |
| } |
| |
| static bool trans_VCVT_f32_f16(DisasContext *s, arg_VCVT_f32_f16 *a) |
| { |
| TCGv_ptr fpst; |
| TCGv_i32 ahp_mode; |
| TCGv_i32 tmp; |
| |
| if (!dc_isar_feature(aa32_fp16_spconv, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| fpst = fpstatus_ptr(FPST_FPCR); |
| ahp_mode = get_ahp_flag(); |
| tmp = tcg_temp_new_i32(); |
| /* The T bit tells us if we want the low or high 16 bits of Vm */ |
| tcg_gen_ld16u_i32(tmp, cpu_env, vfp_f16_offset(a->vm, a->t)); |
| gen_helper_vfp_fcvt_f16_to_f32(tmp, tmp, fpst, ahp_mode); |
| vfp_store_reg32(tmp, a->vd); |
| tcg_temp_free_i32(ahp_mode); |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i32(tmp); |
| return true; |
| } |
| |
| static bool trans_VCVT_f64_f16(DisasContext *s, arg_VCVT_f64_f16 *a) |
| { |
| TCGv_ptr fpst; |
| TCGv_i32 ahp_mode; |
| TCGv_i32 tmp; |
| TCGv_i64 vd; |
| |
| if (!dc_isar_feature(aa32_fpdp_v2, s)) { |
| return false; |
| } |
| |
| if (!dc_isar_feature(aa32_fp16_dpconv, s)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist. */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| fpst = fpstatus_ptr(FPST_FPCR); |
| ahp_mode = get_ahp_flag(); |
| tmp = tcg_temp_new_i32(); |
| /* The T bit tells us if we want the low or high 16 bits of Vm */ |
| tcg_gen_ld16u_i32(tmp, cpu_env, vfp_f16_offset(a->vm, a->t)); |
| vd = tcg_temp_new_i64(); |
| gen_helper_vfp_fcvt_f16_to_f64(vd, tmp, fpst, ahp_mode); |
| vfp_store_reg64(vd, a->vd); |
| tcg_temp_free_i32(ahp_mode); |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i32(tmp); |
| tcg_temp_free_i64(vd); |
| return true; |
| } |
| |
| static bool trans_VCVT_b16_f32(DisasContext *s, arg_VCVT_b16_f32 *a) |
| { |
| TCGv_ptr fpst; |
| TCGv_i32 tmp; |
| |
| if (!dc_isar_feature(aa32_bf16, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| fpst = fpstatus_ptr(FPST_FPCR); |
| tmp = tcg_temp_new_i32(); |
| |
| vfp_load_reg32(tmp, a->vm); |
| gen_helper_bfcvt(tmp, tmp, fpst); |
| tcg_gen_st16_i32(tmp, cpu_env, vfp_f16_offset(a->vd, a->t)); |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i32(tmp); |
| return true; |
| } |
| |
| static bool trans_VCVT_f16_f32(DisasContext *s, arg_VCVT_f16_f32 *a) |
| { |
| TCGv_ptr fpst; |
| TCGv_i32 ahp_mode; |
| TCGv_i32 tmp; |
| |
| if (!dc_isar_feature(aa32_fp16_spconv, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| fpst = fpstatus_ptr(FPST_FPCR); |
| ahp_mode = get_ahp_flag(); |
| tmp = tcg_temp_new_i32(); |
| |
| vfp_load_reg32(tmp, a->vm); |
| gen_helper_vfp_fcvt_f32_to_f16(tmp, tmp, fpst, ahp_mode); |
| tcg_gen_st16_i32(tmp, cpu_env, vfp_f16_offset(a->vd, a->t)); |
| tcg_temp_free_i32(ahp_mode); |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i32(tmp); |
| return true; |
| } |
| |
| static bool trans_VCVT_f16_f64(DisasContext *s, arg_VCVT_f16_f64 *a) |
| { |
| TCGv_ptr fpst; |
| TCGv_i32 ahp_mode; |
| TCGv_i32 tmp; |
| TCGv_i64 vm; |
| |
| if (!dc_isar_feature(aa32_fpdp_v2, s)) { |
| return false; |
| } |
| |
| if (!dc_isar_feature(aa32_fp16_dpconv, s)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist. */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| fpst = fpstatus_ptr(FPST_FPCR); |
| ahp_mode = get_ahp_flag(); |
| tmp = tcg_temp_new_i32(); |
| vm = tcg_temp_new_i64(); |
| |
| vfp_load_reg64(vm, a->vm); |
| gen_helper_vfp_fcvt_f64_to_f16(tmp, vm, fpst, ahp_mode); |
| tcg_temp_free_i64(vm); |
| tcg_gen_st16_i32(tmp, cpu_env, vfp_f16_offset(a->vd, a->t)); |
| tcg_temp_free_i32(ahp_mode); |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i32(tmp); |
| return true; |
| } |
| |
| static bool trans_VRINTR_hp(DisasContext *s, arg_VRINTR_sp *a) |
| { |
| TCGv_ptr fpst; |
| TCGv_i32 tmp; |
| |
| if (!dc_isar_feature(aa32_fp16_arith, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| tmp = tcg_temp_new_i32(); |
| vfp_load_reg32(tmp, a->vm); |
| fpst = fpstatus_ptr(FPST_FPCR_F16); |
| gen_helper_rinth(tmp, tmp, fpst); |
| vfp_store_reg32(tmp, a->vd); |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i32(tmp); |
| return true; |
| } |
| |
| static bool trans_VRINTR_sp(DisasContext *s, arg_VRINTR_sp *a) |
| { |
| TCGv_ptr fpst; |
| TCGv_i32 tmp; |
| |
| if (!dc_isar_feature(aa32_vrint, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| tmp = tcg_temp_new_i32(); |
| vfp_load_reg32(tmp, a->vm); |
| fpst = fpstatus_ptr(FPST_FPCR); |
| gen_helper_rints(tmp, tmp, fpst); |
| vfp_store_reg32(tmp, a->vd); |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i32(tmp); |
| return true; |
| } |
| |
| static bool trans_VRINTR_dp(DisasContext *s, arg_VRINTR_dp *a) |
| { |
| TCGv_ptr fpst; |
| TCGv_i64 tmp; |
| |
| if (!dc_isar_feature(aa32_fpdp_v2, s)) { |
| return false; |
| } |
| |
| if (!dc_isar_feature(aa32_vrint, s)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist. */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| tmp = tcg_temp_new_i64(); |
| vfp_load_reg64(tmp, a->vm); |
| fpst = fpstatus_ptr(FPST_FPCR); |
| gen_helper_rintd(tmp, tmp, fpst); |
| vfp_store_reg64(tmp, a->vd); |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i64(tmp); |
| return true; |
| } |
| |
| static bool trans_VRINTZ_hp(DisasContext *s, arg_VRINTZ_sp *a) |
| { |
| TCGv_ptr fpst; |
| TCGv_i32 tmp; |
| TCGv_i32 tcg_rmode; |
| |
| if (!dc_isar_feature(aa32_fp16_arith, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| tmp = tcg_temp_new_i32(); |
| vfp_load_reg32(tmp, a->vm); |
| fpst = fpstatus_ptr(FPST_FPCR_F16); |
| tcg_rmode = tcg_const_i32(float_round_to_zero); |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); |
| gen_helper_rinth(tmp, tmp, fpst); |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); |
| vfp_store_reg32(tmp, a->vd); |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i32(tcg_rmode); |
| tcg_temp_free_i32(tmp); |
| return true; |
| } |
| |
| static bool trans_VRINTZ_sp(DisasContext *s, arg_VRINTZ_sp *a) |
| { |
| TCGv_ptr fpst; |
| TCGv_i32 tmp; |
| TCGv_i32 tcg_rmode; |
| |
| if (!dc_isar_feature(aa32_vrint, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| tmp = tcg_temp_new_i32(); |
| vfp_load_reg32(tmp, a->vm); |
| fpst = fpstatus_ptr(FPST_FPCR); |
| tcg_rmode = tcg_const_i32(float_round_to_zero); |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); |
| gen_helper_rints(tmp, tmp, fpst); |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); |
| vfp_store_reg32(tmp, a->vd); |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i32(tcg_rmode); |
| tcg_temp_free_i32(tmp); |
| return true; |
| } |
| |
| static bool trans_VRINTZ_dp(DisasContext *s, arg_VRINTZ_dp *a) |
| { |
| TCGv_ptr fpst; |
| TCGv_i64 tmp; |
| TCGv_i32 tcg_rmode; |
| |
| if (!dc_isar_feature(aa32_fpdp_v2, s)) { |
| return false; |
| } |
| |
| if (!dc_isar_feature(aa32_vrint, s)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist. */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| tmp = tcg_temp_new_i64(); |
| vfp_load_reg64(tmp, a->vm); |
| fpst = fpstatus_ptr(FPST_FPCR); |
| tcg_rmode = tcg_const_i32(float_round_to_zero); |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); |
| gen_helper_rintd(tmp, tmp, fpst); |
| gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); |
| vfp_store_reg64(tmp, a->vd); |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i64(tmp); |
| tcg_temp_free_i32(tcg_rmode); |
| return true; |
| } |
| |
| static bool trans_VRINTX_hp(DisasContext *s, arg_VRINTX_sp *a) |
| { |
| TCGv_ptr fpst; |
| TCGv_i32 tmp; |
| |
| if (!dc_isar_feature(aa32_fp16_arith, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| tmp = tcg_temp_new_i32(); |
| vfp_load_reg32(tmp, a->vm); |
| fpst = fpstatus_ptr(FPST_FPCR_F16); |
| gen_helper_rinth_exact(tmp, tmp, fpst); |
| vfp_store_reg32(tmp, a->vd); |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i32(tmp); |
| return true; |
| } |
| |
| static bool trans_VRINTX_sp(DisasContext *s, arg_VRINTX_sp *a) |
| { |
| TCGv_ptr fpst; |
| TCGv_i32 tmp; |
| |
| if (!dc_isar_feature(aa32_vrint, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| tmp = tcg_temp_new_i32(); |
| vfp_load_reg32(tmp, a->vm); |
| fpst = fpstatus_ptr(FPST_FPCR); |
| gen_helper_rints_exact(tmp, tmp, fpst); |
| vfp_store_reg32(tmp, a->vd); |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i32(tmp); |
| return true; |
| } |
| |
| static bool trans_VRINTX_dp(DisasContext *s, arg_VRINTX_dp *a) |
| { |
| TCGv_ptr fpst; |
| TCGv_i64 tmp; |
| |
| if (!dc_isar_feature(aa32_fpdp_v2, s)) { |
| return false; |
| } |
| |
| if (!dc_isar_feature(aa32_vrint, s)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist. */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && ((a->vd | a->vm) & 0x10)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| tmp = tcg_temp_new_i64(); |
| vfp_load_reg64(tmp, a->vm); |
| fpst = fpstatus_ptr(FPST_FPCR); |
| gen_helper_rintd_exact(tmp, tmp, fpst); |
| vfp_store_reg64(tmp, a->vd); |
| tcg_temp_free_ptr(fpst); |
| tcg_temp_free_i64(tmp); |
| return true; |
| } |
| |
| static bool trans_VCVT_sp(DisasContext *s, arg_VCVT_sp *a) |
| { |
| TCGv_i64 vd; |
| TCGv_i32 vm; |
| |
| if (!dc_isar_feature(aa32_fpdp_v2, s)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist. */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| vm = tcg_temp_new_i32(); |
| vd = tcg_temp_new_i64(); |
| vfp_load_reg32(vm, a->vm); |
| gen_helper_vfp_fcvtds(vd, vm, cpu_env); |
| vfp_store_reg64(vd, a->vd); |
| tcg_temp_free_i32(vm); |
| tcg_temp_free_i64(vd); |
| return true; |
| } |
| |
| static bool trans_VCVT_dp(DisasContext *s, arg_VCVT_dp *a) |
| { |
| TCGv_i64 vm; |
| TCGv_i32 vd; |
| |
| if (!dc_isar_feature(aa32_fpdp_v2, s)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist. */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| vd = tcg_temp_new_i32(); |
| vm = tcg_temp_new_i64(); |
| vfp_load_reg64(vm, a->vm); |
| gen_helper_vfp_fcvtsd(vd, vm, cpu_env); |
| vfp_store_reg32(vd, a->vd); |
| tcg_temp_free_i32(vd); |
| tcg_temp_free_i64(vm); |
| return true; |
| } |
| |
| static bool trans_VCVT_int_hp(DisasContext *s, arg_VCVT_int_sp *a) |
| { |
| TCGv_i32 vm; |
| TCGv_ptr fpst; |
| |
| if (!dc_isar_feature(aa32_fp16_arith, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| vm = tcg_temp_new_i32(); |
| vfp_load_reg32(vm, a->vm); |
| fpst = fpstatus_ptr(FPST_FPCR_F16); |
| if (a->s) { |
| /* i32 -> f16 */ |
| gen_helper_vfp_sitoh(vm, vm, fpst); |
| } else { |
| /* u32 -> f16 */ |
| gen_helper_vfp_uitoh(vm, vm, fpst); |
| } |
| vfp_store_reg32(vm, a->vd); |
| tcg_temp_free_i32(vm); |
| tcg_temp_free_ptr(fpst); |
| return true; |
| } |
| |
| static bool trans_VCVT_int_sp(DisasContext *s, arg_VCVT_int_sp *a) |
| { |
| TCGv_i32 vm; |
| TCGv_ptr fpst; |
| |
| if (!dc_isar_feature(aa32_fpsp_v2, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| vm = tcg_temp_new_i32(); |
| vfp_load_reg32(vm, a->vm); |
| fpst = fpstatus_ptr(FPST_FPCR); |
| if (a->s) { |
| /* i32 -> f32 */ |
| gen_helper_vfp_sitos(vm, vm, fpst); |
| } else { |
| /* u32 -> f32 */ |
| gen_helper_vfp_uitos(vm, vm, fpst); |
| } |
| vfp_store_reg32(vm, a->vd); |
| tcg_temp_free_i32(vm); |
| tcg_temp_free_ptr(fpst); |
| return true; |
| } |
| |
| static bool trans_VCVT_int_dp(DisasContext *s, arg_VCVT_int_dp *a) |
| { |
| TCGv_i32 vm; |
| TCGv_i64 vd; |
| TCGv_ptr fpst; |
| |
| if (!dc_isar_feature(aa32_fpdp_v2, s)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist. */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| vm = tcg_temp_new_i32(); |
| vd = tcg_temp_new_i64(); |
| vfp_load_reg32(vm, a->vm); |
| fpst = fpstatus_ptr(FPST_FPCR); |
| if (a->s) { |
| /* i32 -> f64 */ |
| gen_helper_vfp_sitod(vd, vm, fpst); |
| } else { |
| /* u32 -> f64 */ |
| gen_helper_vfp_uitod(vd, vm, fpst); |
| } |
| vfp_store_reg64(vd, a->vd); |
| tcg_temp_free_i32(vm); |
| tcg_temp_free_i64(vd); |
| tcg_temp_free_ptr(fpst); |
| return true; |
| } |
| |
| static bool trans_VJCVT(DisasContext *s, arg_VJCVT *a) |
| { |
| TCGv_i32 vd; |
| TCGv_i64 vm; |
| |
| if (!dc_isar_feature(aa32_fpdp_v2, s)) { |
| return false; |
| } |
| |
| if (!dc_isar_feature(aa32_jscvt, s)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist. */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| vm = tcg_temp_new_i64(); |
| vd = tcg_temp_new_i32(); |
| vfp_load_reg64(vm, a->vm); |
| gen_helper_vjcvt(vd, vm, cpu_env); |
| vfp_store_reg32(vd, a->vd); |
| tcg_temp_free_i64(vm); |
| tcg_temp_free_i32(vd); |
| return true; |
| } |
| |
| static bool trans_VCVT_fix_hp(DisasContext *s, arg_VCVT_fix_sp *a) |
| { |
| TCGv_i32 vd, shift; |
| TCGv_ptr fpst; |
| int frac_bits; |
| |
| if (!dc_isar_feature(aa32_fp16_arith, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| frac_bits = (a->opc & 1) ? (32 - a->imm) : (16 - a->imm); |
| |
| vd = tcg_temp_new_i32(); |
| vfp_load_reg32(vd, a->vd); |
| |
| fpst = fpstatus_ptr(FPST_FPCR_F16); |
| shift = tcg_constant_i32(frac_bits); |
| |
| /* Switch on op:U:sx bits */ |
| switch (a->opc) { |
| case 0: |
| gen_helper_vfp_shtoh_round_to_nearest(vd, vd, shift, fpst); |
| break; |
| case 1: |
| gen_helper_vfp_sltoh_round_to_nearest(vd, vd, shift, fpst); |
| break; |
| case 2: |
| gen_helper_vfp_uhtoh_round_to_nearest(vd, vd, shift, fpst); |
| break; |
| case 3: |
| gen_helper_vfp_ultoh_round_to_nearest(vd, vd, shift, fpst); |
| break; |
| case 4: |
| gen_helper_vfp_toshh_round_to_zero(vd, vd, shift, fpst); |
| break; |
| case 5: |
| gen_helper_vfp_toslh_round_to_zero(vd, vd, shift, fpst); |
| break; |
| case 6: |
| gen_helper_vfp_touhh_round_to_zero(vd, vd, shift, fpst); |
| break; |
| case 7: |
| gen_helper_vfp_toulh_round_to_zero(vd, vd, shift, fpst); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| vfp_store_reg32(vd, a->vd); |
| tcg_temp_free_i32(vd); |
| tcg_temp_free_ptr(fpst); |
| return true; |
| } |
| |
| static bool trans_VCVT_fix_sp(DisasContext *s, arg_VCVT_fix_sp *a) |
| { |
| TCGv_i32 vd, shift; |
| TCGv_ptr fpst; |
| int frac_bits; |
| |
| if (!dc_isar_feature(aa32_fpsp_v3, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| frac_bits = (a->opc & 1) ? (32 - a->imm) : (16 - a->imm); |
| |
| vd = tcg_temp_new_i32(); |
| vfp_load_reg32(vd, a->vd); |
| |
| fpst = fpstatus_ptr(FPST_FPCR); |
| shift = tcg_constant_i32(frac_bits); |
| |
| /* Switch on op:U:sx bits */ |
| switch (a->opc) { |
| case 0: |
| gen_helper_vfp_shtos_round_to_nearest(vd, vd, shift, fpst); |
| break; |
| case 1: |
| gen_helper_vfp_sltos_round_to_nearest(vd, vd, shift, fpst); |
| break; |
| case 2: |
| gen_helper_vfp_uhtos_round_to_nearest(vd, vd, shift, fpst); |
| break; |
| case 3: |
| gen_helper_vfp_ultos_round_to_nearest(vd, vd, shift, fpst); |
| break; |
| case 4: |
| gen_helper_vfp_toshs_round_to_zero(vd, vd, shift, fpst); |
| break; |
| case 5: |
| gen_helper_vfp_tosls_round_to_zero(vd, vd, shift, fpst); |
| break; |
| case 6: |
| gen_helper_vfp_touhs_round_to_zero(vd, vd, shift, fpst); |
| break; |
| case 7: |
| gen_helper_vfp_touls_round_to_zero(vd, vd, shift, fpst); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| vfp_store_reg32(vd, a->vd); |
| tcg_temp_free_i32(vd); |
| tcg_temp_free_ptr(fpst); |
| return true; |
| } |
| |
| static bool trans_VCVT_fix_dp(DisasContext *s, arg_VCVT_fix_dp *a) |
| { |
| TCGv_i64 vd; |
| TCGv_i32 shift; |
| TCGv_ptr fpst; |
| int frac_bits; |
| |
| if (!dc_isar_feature(aa32_fpdp_v3, s)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist. */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| frac_bits = (a->opc & 1) ? (32 - a->imm) : (16 - a->imm); |
| |
| vd = tcg_temp_new_i64(); |
| vfp_load_reg64(vd, a->vd); |
| |
| fpst = fpstatus_ptr(FPST_FPCR); |
| shift = tcg_constant_i32(frac_bits); |
| |
| /* Switch on op:U:sx bits */ |
| switch (a->opc) { |
| case 0: |
| gen_helper_vfp_shtod_round_to_nearest(vd, vd, shift, fpst); |
| break; |
| case 1: |
| gen_helper_vfp_sltod_round_to_nearest(vd, vd, shift, fpst); |
| break; |
| case 2: |
| gen_helper_vfp_uhtod_round_to_nearest(vd, vd, shift, fpst); |
| break; |
| case 3: |
| gen_helper_vfp_ultod_round_to_nearest(vd, vd, shift, fpst); |
| break; |
| case 4: |
| gen_helper_vfp_toshd_round_to_zero(vd, vd, shift, fpst); |
| break; |
| case 5: |
| gen_helper_vfp_tosld_round_to_zero(vd, vd, shift, fpst); |
| break; |
| case 6: |
| gen_helper_vfp_touhd_round_to_zero(vd, vd, shift, fpst); |
| break; |
| case 7: |
| gen_helper_vfp_tould_round_to_zero(vd, vd, shift, fpst); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| vfp_store_reg64(vd, a->vd); |
| tcg_temp_free_i64(vd); |
| tcg_temp_free_ptr(fpst); |
| return true; |
| } |
| |
| static bool trans_VCVT_hp_int(DisasContext *s, arg_VCVT_sp_int *a) |
| { |
| TCGv_i32 vm; |
| TCGv_ptr fpst; |
| |
| if (!dc_isar_feature(aa32_fp16_arith, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| fpst = fpstatus_ptr(FPST_FPCR_F16); |
| vm = tcg_temp_new_i32(); |
| vfp_load_reg32(vm, a->vm); |
| |
| if (a->s) { |
| if (a->rz) { |
| gen_helper_vfp_tosizh(vm, vm, fpst); |
| } else { |
| gen_helper_vfp_tosih(vm, vm, fpst); |
| } |
| } else { |
| if (a->rz) { |
| gen_helper_vfp_touizh(vm, vm, fpst); |
| } else { |
| gen_helper_vfp_touih(vm, vm, fpst); |
| } |
| } |
| vfp_store_reg32(vm, a->vd); |
| tcg_temp_free_i32(vm); |
| tcg_temp_free_ptr(fpst); |
| return true; |
| } |
| |
| static bool trans_VCVT_sp_int(DisasContext *s, arg_VCVT_sp_int *a) |
| { |
| TCGv_i32 vm; |
| TCGv_ptr fpst; |
| |
| if (!dc_isar_feature(aa32_fpsp_v2, s)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| fpst = fpstatus_ptr(FPST_FPCR); |
| vm = tcg_temp_new_i32(); |
| vfp_load_reg32(vm, a->vm); |
| |
| if (a->s) { |
| if (a->rz) { |
| gen_helper_vfp_tosizs(vm, vm, fpst); |
| } else { |
| gen_helper_vfp_tosis(vm, vm, fpst); |
| } |
| } else { |
| if (a->rz) { |
| gen_helper_vfp_touizs(vm, vm, fpst); |
| } else { |
| gen_helper_vfp_touis(vm, vm, fpst); |
| } |
| } |
| vfp_store_reg32(vm, a->vd); |
| tcg_temp_free_i32(vm); |
| tcg_temp_free_ptr(fpst); |
| return true; |
| } |
| |
| static bool trans_VCVT_dp_int(DisasContext *s, arg_VCVT_dp_int *a) |
| { |
| TCGv_i32 vd; |
| TCGv_i64 vm; |
| TCGv_ptr fpst; |
| |
| if (!dc_isar_feature(aa32_fpdp_v2, s)) { |
| return false; |
| } |
| |
| /* UNDEF accesses to D16-D31 if they don't exist. */ |
| if (!dc_isar_feature(aa32_simd_r32, s) && (a->vm & 0x10)) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| fpst = fpstatus_ptr(FPST_FPCR); |
| vm = tcg_temp_new_i64(); |
| vd = tcg_temp_new_i32(); |
| vfp_load_reg64(vm, a->vm); |
| |
| if (a->s) { |
| if (a->rz) { |
| gen_helper_vfp_tosizd(vd, vm, fpst); |
| } else { |
| gen_helper_vfp_tosid(vd, vm, fpst); |
| } |
| } else { |
| if (a->rz) { |
| gen_helper_vfp_touizd(vd, vm, fpst); |
| } else { |
| gen_helper_vfp_touid(vd, vm, fpst); |
| } |
| } |
| vfp_store_reg32(vd, a->vd); |
| tcg_temp_free_i32(vd); |
| tcg_temp_free_i64(vm); |
| tcg_temp_free_ptr(fpst); |
| return true; |
| } |
| |
| static bool trans_VINS(DisasContext *s, arg_VINS *a) |
| { |
| TCGv_i32 rd, rm; |
| |
| if (!dc_isar_feature(aa32_fp16_arith, s)) { |
| return false; |
| } |
| |
| if (s->vec_len != 0 || s->vec_stride != 0) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| /* Insert low half of Vm into high half of Vd */ |
| rm = tcg_temp_new_i32(); |
| rd = tcg_temp_new_i32(); |
| vfp_load_reg32(rm, a->vm); |
| vfp_load_reg32(rd, a->vd); |
| tcg_gen_deposit_i32(rd, rd, rm, 16, 16); |
| vfp_store_reg32(rd, a->vd); |
| tcg_temp_free_i32(rm); |
| tcg_temp_free_i32(rd); |
| return true; |
| } |
| |
| static bool trans_VMOVX(DisasContext *s, arg_VINS *a) |
| { |
| TCGv_i32 rm; |
| |
| if (!dc_isar_feature(aa32_fp16_arith, s)) { |
| return false; |
| } |
| |
| if (s->vec_len != 0 || s->vec_stride != 0) { |
| return false; |
| } |
| |
| if (!vfp_access_check(s)) { |
| return true; |
| } |
| |
| /* Set Vd to high half of Vm */ |
| rm = tcg_temp_new_i32(); |
| vfp_load_reg32(rm, a->vm); |
| tcg_gen_shri_i32(rm, rm, 16); |
| vfp_store_reg32(rm, a->vd); |
| tcg_temp_free_i32(rm); |
| return true; |
| } |