| /* This is the Linux kernel elf-loading code, ported into user space */ |
| |
| #include <stdio.h> |
| #include <sys/types.h> |
| #include <fcntl.h> |
| #include <sys/stat.h> |
| #include <errno.h> |
| #include <unistd.h> |
| #include <sys/mman.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "qemu.h" |
| #include "disas.h" |
| |
| /* this flag is uneffective under linux too, should be deleted */ |
| #ifndef MAP_DENYWRITE |
| #define MAP_DENYWRITE 0 |
| #endif |
| |
| /* should probably go in elf.h */ |
| #ifndef ELIBBAD |
| #define ELIBBAD 80 |
| #endif |
| |
| #ifdef TARGET_I386 |
| |
| #define ELF_PLATFORM get_elf_platform() |
| |
| static const char *get_elf_platform(void) |
| { |
| static char elf_platform[] = "i386"; |
| int family = (global_env->cpuid_version >> 8) & 0xff; |
| if (family > 6) |
| family = 6; |
| if (family >= 3) |
| elf_platform[1] = '0' + family; |
| return elf_platform; |
| } |
| |
| #define ELF_HWCAP get_elf_hwcap() |
| |
| static uint32_t get_elf_hwcap(void) |
| { |
| return global_env->cpuid_features; |
| } |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| /* |
| * This is used to ensure we don't load something for the wrong architecture. |
| */ |
| #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) |
| |
| /* |
| * These are used to set parameters in the core dumps. |
| */ |
| #define ELF_CLASS ELFCLASS32 |
| #define ELF_DATA ELFDATA2LSB |
| #define ELF_ARCH EM_386 |
| |
| /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program |
| starts %edx contains a pointer to a function which might be |
| registered using `atexit'. This provides a mean for the |
| dynamic linker to call DT_FINI functions for shared libraries |
| that have been loaded before the code runs. |
| |
| A value of 0 tells we have no such handler. */ |
| #define ELF_PLAT_INIT(_r) _r->edx = 0 |
| |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| regs->esp = infop->start_stack; |
| regs->eip = infop->entry; |
| } |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 4096 |
| |
| #endif |
| |
| #ifdef TARGET_ARM |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| #define elf_check_arch(x) ( (x) == EM_ARM ) |
| |
| #define ELF_CLASS ELFCLASS32 |
| #ifdef TARGET_WORDS_BIGENDIAN |
| #define ELF_DATA ELFDATA2MSB |
| #else |
| #define ELF_DATA ELFDATA2LSB |
| #endif |
| #define ELF_ARCH EM_ARM |
| |
| #define ELF_PLAT_INIT(_r) _r->ARM_r0 = 0 |
| |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| target_long *stack = (void *)infop->start_stack; |
| memset(regs, 0, sizeof(*regs)); |
| regs->ARM_cpsr = 0x10; |
| regs->ARM_pc = infop->entry; |
| regs->ARM_sp = infop->start_stack; |
| regs->ARM_r2 = tswapl(stack[2]); /* envp */ |
| regs->ARM_r1 = tswapl(stack[1]); /* argv */ |
| /* XXX: it seems that r0 is zeroed after ! */ |
| // regs->ARM_r0 = tswapl(stack[0]); /* argc */ |
| } |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 4096 |
| |
| enum |
| { |
| ARM_HWCAP_ARM_SWP = 1 << 0, |
| ARM_HWCAP_ARM_HALF = 1 << 1, |
| ARM_HWCAP_ARM_THUMB = 1 << 2, |
| ARM_HWCAP_ARM_26BIT = 1 << 3, |
| ARM_HWCAP_ARM_FAST_MULT = 1 << 4, |
| ARM_HWCAP_ARM_FPA = 1 << 5, |
| ARM_HWCAP_ARM_VFP = 1 << 6, |
| ARM_HWCAP_ARM_EDSP = 1 << 7, |
| }; |
| |
| #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \ |
| | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \ |
| | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP) |
| |
| #endif |
| |
| #ifdef TARGET_SPARC |
| #ifdef TARGET_SPARC64 |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| #define elf_check_arch(x) ( (x) == EM_SPARC ) |
| |
| #define ELF_CLASS ELFCLASS64 |
| #define ELF_DATA ELFDATA2MSB |
| #define ELF_ARCH EM_SPARC |
| |
| /*XXX*/ |
| #define ELF_PLAT_INIT(_r) |
| |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| regs->tstate = 0; |
| regs->pc = infop->entry; |
| regs->npc = regs->pc + 4; |
| regs->y = 0; |
| regs->u_regs[14] = infop->start_stack - 16 * 4; |
| } |
| |
| #else |
| #define ELF_START_MMAP 0x80000000 |
| |
| #define elf_check_arch(x) ( (x) == EM_SPARC ) |
| |
| #define ELF_CLASS ELFCLASS32 |
| #define ELF_DATA ELFDATA2MSB |
| #define ELF_ARCH EM_SPARC |
| |
| /*XXX*/ |
| #define ELF_PLAT_INIT(_r) |
| |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| regs->psr = 0; |
| regs->pc = infop->entry; |
| regs->npc = regs->pc + 4; |
| regs->y = 0; |
| regs->u_regs[14] = infop->start_stack - 16 * 4; |
| } |
| |
| #endif |
| #endif |
| |
| #ifdef TARGET_PPC |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| #define elf_check_arch(x) ( (x) == EM_PPC ) |
| |
| #define ELF_CLASS ELFCLASS32 |
| #ifdef TARGET_WORDS_BIGENDIAN |
| #define ELF_DATA ELFDATA2MSB |
| #else |
| #define ELF_DATA ELFDATA2LSB |
| #endif |
| #define ELF_ARCH EM_PPC |
| |
| /* Note that isn't exactly what regular kernel does |
| * but this is what the ABI wants and is needed to allow |
| * execution of PPC BSD programs. |
| */ |
| #define ELF_PLAT_INIT(_r) \ |
| do { \ |
| target_ulong *pos = (target_ulong *)bprm->p, tmp = 1; \ |
| _r->gpr[3] = bprm->argc; \ |
| _r->gpr[4] = (unsigned long)++pos; \ |
| for (; tmp != 0; pos++) \ |
| tmp = *pos; \ |
| _r->gpr[5] = (unsigned long)pos; \ |
| } while (0) |
| |
| /* |
| * We need to put in some extra aux table entries to tell glibc what |
| * the cache block size is, so it can use the dcbz instruction safely. |
| */ |
| #define AT_DCACHEBSIZE 19 |
| #define AT_ICACHEBSIZE 20 |
| #define AT_UCACHEBSIZE 21 |
| /* A special ignored type value for PPC, for glibc compatibility. */ |
| #define AT_IGNOREPPC 22 |
| /* |
| * The requirements here are: |
| * - keep the final alignment of sp (sp & 0xf) |
| * - make sure the 32-bit value at the first 16 byte aligned position of |
| * AUXV is greater than 16 for glibc compatibility. |
| * AT_IGNOREPPC is used for that. |
| * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, |
| * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. |
| */ |
| #define DLINFO_ARCH_ITEMS 5 |
| #define ARCH_DLINFO \ |
| do { \ |
| NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \ |
| NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \ |
| NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ |
| /* \ |
| * Now handle glibc compatibility. \ |
| */ \ |
| NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ |
| NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ |
| } while (0) |
| |
| static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) |
| { |
| _regs->msr = 1 << MSR_PR; /* Set user mode */ |
| _regs->gpr[1] = infop->start_stack; |
| _regs->nip = infop->entry; |
| } |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 4096 |
| |
| #endif |
| |
| #ifdef TARGET_MIPS |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| #define elf_check_arch(x) ( (x) == EM_MIPS ) |
| |
| #define ELF_CLASS ELFCLASS32 |
| #ifdef TARGET_WORDS_BIGENDIAN |
| #define ELF_DATA ELFDATA2MSB |
| #else |
| #define ELF_DATA ELFDATA2LSB |
| #endif |
| #define ELF_ARCH EM_MIPS |
| |
| #define ELF_PLAT_INIT(_r) |
| |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| regs->cp0_status = CP0St_UM; |
| regs->cp0_epc = infop->entry; |
| regs->regs[29] = infop->start_stack; |
| } |
| |
| #endif /* TARGET_MIPS */ |
| |
| #ifndef ELF_PLATFORM |
| #define ELF_PLATFORM (NULL) |
| #endif |
| |
| #ifndef ELF_HWCAP |
| #define ELF_HWCAP 0 |
| #endif |
| |
| #include "elf.h" |
| |
| /* |
| * MAX_ARG_PAGES defines the number of pages allocated for arguments |
| * and envelope for the new program. 32 should suffice, this gives |
| * a maximum env+arg of 128kB w/4KB pages! |
| */ |
| #define MAX_ARG_PAGES 32 |
| |
| /* |
| * This structure is used to hold the arguments that are |
| * used when loading binaries. |
| */ |
| struct linux_binprm { |
| char buf[128]; |
| unsigned long page[MAX_ARG_PAGES]; |
| unsigned long p; |
| int sh_bang; |
| int fd; |
| int e_uid, e_gid; |
| int argc, envc; |
| char * filename; /* Name of binary */ |
| unsigned long loader, exec; |
| int dont_iput; /* binfmt handler has put inode */ |
| }; |
| |
| struct exec |
| { |
| unsigned int a_info; /* Use macros N_MAGIC, etc for access */ |
| unsigned int a_text; /* length of text, in bytes */ |
| unsigned int a_data; /* length of data, in bytes */ |
| unsigned int a_bss; /* length of uninitialized data area, in bytes */ |
| unsigned int a_syms; /* length of symbol table data in file, in bytes */ |
| unsigned int a_entry; /* start address */ |
| unsigned int a_trsize; /* length of relocation info for text, in bytes */ |
| unsigned int a_drsize; /* length of relocation info for data, in bytes */ |
| }; |
| |
| |
| #define N_MAGIC(exec) ((exec).a_info & 0xffff) |
| #define OMAGIC 0407 |
| #define NMAGIC 0410 |
| #define ZMAGIC 0413 |
| #define QMAGIC 0314 |
| |
| /* max code+data+bss space allocated to elf interpreter */ |
| #define INTERP_MAP_SIZE (32 * 1024 * 1024) |
| |
| /* max code+data+bss+brk space allocated to ET_DYN executables */ |
| #define ET_DYN_MAP_SIZE (128 * 1024 * 1024) |
| |
| /* from personality.h */ |
| |
| /* Flags for bug emulation. These occupy the top three bytes. */ |
| #define STICKY_TIMEOUTS 0x4000000 |
| #define WHOLE_SECONDS 0x2000000 |
| |
| /* Personality types. These go in the low byte. Avoid using the top bit, |
| * it will conflict with error returns. |
| */ |
| #define PER_MASK (0x00ff) |
| #define PER_LINUX (0x0000) |
| #define PER_SVR4 (0x0001 | STICKY_TIMEOUTS) |
| #define PER_SVR3 (0x0002 | STICKY_TIMEOUTS) |
| #define PER_SCOSVR3 (0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS) |
| #define PER_WYSEV386 (0x0004 | STICKY_TIMEOUTS) |
| #define PER_ISCR4 (0x0005 | STICKY_TIMEOUTS) |
| #define PER_BSD (0x0006) |
| #define PER_XENIX (0x0007 | STICKY_TIMEOUTS) |
| |
| /* Necessary parameters */ |
| #define NGROUPS 32 |
| |
| #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE |
| #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1)) |
| #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) |
| |
| #define INTERPRETER_NONE 0 |
| #define INTERPRETER_AOUT 1 |
| #define INTERPRETER_ELF 2 |
| |
| #define DLINFO_ITEMS 12 |
| |
| static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) |
| { |
| memcpy(to, from, n); |
| } |
| |
| extern unsigned long x86_stack_size; |
| |
| static int load_aout_interp(void * exptr, int interp_fd); |
| |
| #ifdef BSWAP_NEEDED |
| static void bswap_ehdr(struct elfhdr *ehdr) |
| { |
| bswap16s(&ehdr->e_type); /* Object file type */ |
| bswap16s(&ehdr->e_machine); /* Architecture */ |
| bswap32s(&ehdr->e_version); /* Object file version */ |
| bswaptls(&ehdr->e_entry); /* Entry point virtual address */ |
| bswaptls(&ehdr->e_phoff); /* Program header table file offset */ |
| bswaptls(&ehdr->e_shoff); /* Section header table file offset */ |
| bswap32s(&ehdr->e_flags); /* Processor-specific flags */ |
| bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ |
| bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ |
| bswap16s(&ehdr->e_phnum); /* Program header table entry count */ |
| bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ |
| bswap16s(&ehdr->e_shnum); /* Section header table entry count */ |
| bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ |
| } |
| |
| static void bswap_phdr(struct elf_phdr *phdr) |
| { |
| bswap32s(&phdr->p_type); /* Segment type */ |
| bswaptls(&phdr->p_offset); /* Segment file offset */ |
| bswaptls(&phdr->p_vaddr); /* Segment virtual address */ |
| bswaptls(&phdr->p_paddr); /* Segment physical address */ |
| bswaptls(&phdr->p_filesz); /* Segment size in file */ |
| bswaptls(&phdr->p_memsz); /* Segment size in memory */ |
| bswap32s(&phdr->p_flags); /* Segment flags */ |
| bswaptls(&phdr->p_align); /* Segment alignment */ |
| } |
| |
| static void bswap_shdr(struct elf_shdr *shdr) |
| { |
| bswap32s(&shdr->sh_name); |
| bswap32s(&shdr->sh_type); |
| bswaptls(&shdr->sh_flags); |
| bswaptls(&shdr->sh_addr); |
| bswaptls(&shdr->sh_offset); |
| bswaptls(&shdr->sh_size); |
| bswap32s(&shdr->sh_link); |
| bswap32s(&shdr->sh_info); |
| bswaptls(&shdr->sh_addralign); |
| bswaptls(&shdr->sh_entsize); |
| } |
| |
| static void bswap_sym(Elf32_Sym *sym) |
| { |
| bswap32s(&sym->st_name); |
| bswap32s(&sym->st_value); |
| bswap32s(&sym->st_size); |
| bswap16s(&sym->st_shndx); |
| } |
| #endif |
| |
| static void * get_free_page(void) |
| { |
| void * retval; |
| |
| /* User-space version of kernel get_free_page. Returns a page-aligned |
| * page-sized chunk of memory. |
| */ |
| retval = (void *)target_mmap(0, qemu_host_page_size, PROT_READ|PROT_WRITE, |
| MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); |
| |
| if((long)retval == -1) { |
| perror("get_free_page"); |
| exit(-1); |
| } |
| else { |
| return(retval); |
| } |
| } |
| |
| static void free_page(void * pageaddr) |
| { |
| target_munmap((unsigned long)pageaddr, qemu_host_page_size); |
| } |
| |
| /* |
| * 'copy_string()' copies argument/envelope strings from user |
| * memory to free pages in kernel mem. These are in a format ready |
| * to be put directly into the top of new user memory. |
| * |
| */ |
| static unsigned long copy_strings(int argc,char ** argv,unsigned long *page, |
| unsigned long p) |
| { |
| char *tmp, *tmp1, *pag = NULL; |
| int len, offset = 0; |
| |
| if (!p) { |
| return 0; /* bullet-proofing */ |
| } |
| while (argc-- > 0) { |
| tmp = argv[argc]; |
| if (!tmp) { |
| fprintf(stderr, "VFS: argc is wrong"); |
| exit(-1); |
| } |
| tmp1 = tmp; |
| while (*tmp++); |
| len = tmp - tmp1; |
| if (p < len) { /* this shouldn't happen - 128kB */ |
| return 0; |
| } |
| while (len) { |
| --p; --tmp; --len; |
| if (--offset < 0) { |
| offset = p % TARGET_PAGE_SIZE; |
| pag = (char *) page[p/TARGET_PAGE_SIZE]; |
| if (!pag) { |
| pag = (char *)get_free_page(); |
| page[p/TARGET_PAGE_SIZE] = (unsigned long)pag; |
| if (!pag) |
| return 0; |
| } |
| } |
| if (len == 0 || offset == 0) { |
| *(pag + offset) = *tmp; |
| } |
| else { |
| int bytes_to_copy = (len > offset) ? offset : len; |
| tmp -= bytes_to_copy; |
| p -= bytes_to_copy; |
| offset -= bytes_to_copy; |
| len -= bytes_to_copy; |
| memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); |
| } |
| } |
| } |
| return p; |
| } |
| |
| static int in_group_p(gid_t g) |
| { |
| /* return TRUE if we're in the specified group, FALSE otherwise */ |
| int ngroup; |
| int i; |
| gid_t grouplist[NGROUPS]; |
| |
| ngroup = getgroups(NGROUPS, grouplist); |
| for(i = 0; i < ngroup; i++) { |
| if(grouplist[i] == g) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static int count(char ** vec) |
| { |
| int i; |
| |
| for(i = 0; *vec; i++) { |
| vec++; |
| } |
| |
| return(i); |
| } |
| |
| static int prepare_binprm(struct linux_binprm *bprm) |
| { |
| struct stat st; |
| int mode; |
| int retval, id_change; |
| |
| if(fstat(bprm->fd, &st) < 0) { |
| return(-errno); |
| } |
| |
| mode = st.st_mode; |
| if(!S_ISREG(mode)) { /* Must be regular file */ |
| return(-EACCES); |
| } |
| if(!(mode & 0111)) { /* Must have at least one execute bit set */ |
| return(-EACCES); |
| } |
| |
| bprm->e_uid = geteuid(); |
| bprm->e_gid = getegid(); |
| id_change = 0; |
| |
| /* Set-uid? */ |
| if(mode & S_ISUID) { |
| bprm->e_uid = st.st_uid; |
| if(bprm->e_uid != geteuid()) { |
| id_change = 1; |
| } |
| } |
| |
| /* Set-gid? */ |
| /* |
| * If setgid is set but no group execute bit then this |
| * is a candidate for mandatory locking, not a setgid |
| * executable. |
| */ |
| if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { |
| bprm->e_gid = st.st_gid; |
| if (!in_group_p(bprm->e_gid)) { |
| id_change = 1; |
| } |
| } |
| |
| memset(bprm->buf, 0, sizeof(bprm->buf)); |
| retval = lseek(bprm->fd, 0L, SEEK_SET); |
| if(retval >= 0) { |
| retval = read(bprm->fd, bprm->buf, 128); |
| } |
| if(retval < 0) { |
| perror("prepare_binprm"); |
| exit(-1); |
| /* return(-errno); */ |
| } |
| else { |
| return(retval); |
| } |
| } |
| |
| unsigned long setup_arg_pages(unsigned long p, struct linux_binprm * bprm, |
| struct image_info * info) |
| { |
| unsigned long stack_base, size, error; |
| int i; |
| |
| /* Create enough stack to hold everything. If we don't use |
| * it for args, we'll use it for something else... |
| */ |
| size = x86_stack_size; |
| if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) |
| size = MAX_ARG_PAGES*TARGET_PAGE_SIZE; |
| error = target_mmap(0, |
| size + qemu_host_page_size, |
| PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS, |
| -1, 0); |
| if (error == -1) { |
| perror("stk mmap"); |
| exit(-1); |
| } |
| /* we reserve one extra page at the top of the stack as guard */ |
| target_mprotect(error + size, qemu_host_page_size, PROT_NONE); |
| |
| stack_base = error + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE; |
| p += stack_base; |
| |
| if (bprm->loader) { |
| bprm->loader += stack_base; |
| } |
| bprm->exec += stack_base; |
| |
| for (i = 0 ; i < MAX_ARG_PAGES ; i++) { |
| if (bprm->page[i]) { |
| info->rss++; |
| |
| memcpy((void *)stack_base, (void *)bprm->page[i], TARGET_PAGE_SIZE); |
| free_page((void *)bprm->page[i]); |
| } |
| stack_base += TARGET_PAGE_SIZE; |
| } |
| return p; |
| } |
| |
| static void set_brk(unsigned long start, unsigned long end) |
| { |
| /* page-align the start and end addresses... */ |
| start = HOST_PAGE_ALIGN(start); |
| end = HOST_PAGE_ALIGN(end); |
| if (end <= start) |
| return; |
| if(target_mmap(start, end - start, |
| PROT_READ | PROT_WRITE | PROT_EXEC, |
| MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0) == -1) { |
| perror("cannot mmap brk"); |
| exit(-1); |
| } |
| } |
| |
| |
| /* We need to explicitly zero any fractional pages after the data |
| section (i.e. bss). This would contain the junk from the file that |
| should not be in memory. */ |
| static void padzero(unsigned long elf_bss) |
| { |
| unsigned long nbyte; |
| char * fpnt; |
| |
| /* XXX: this is really a hack : if the real host page size is |
| smaller than the target page size, some pages after the end |
| of the file may not be mapped. A better fix would be to |
| patch target_mmap(), but it is more complicated as the file |
| size must be known */ |
| if (qemu_real_host_page_size < qemu_host_page_size) { |
| unsigned long end_addr, end_addr1; |
| end_addr1 = (elf_bss + qemu_real_host_page_size - 1) & |
| ~(qemu_real_host_page_size - 1); |
| end_addr = HOST_PAGE_ALIGN(elf_bss); |
| if (end_addr1 < end_addr) { |
| mmap((void *)end_addr1, end_addr - end_addr1, |
| PROT_READ|PROT_WRITE|PROT_EXEC, |
| MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); |
| } |
| } |
| |
| nbyte = elf_bss & (qemu_host_page_size-1); |
| if (nbyte) { |
| nbyte = qemu_host_page_size - nbyte; |
| fpnt = (char *) elf_bss; |
| do { |
| *fpnt++ = 0; |
| } while (--nbyte); |
| } |
| } |
| |
| static unsigned int * create_elf_tables(char *p, int argc, int envc, |
| struct elfhdr * exec, |
| unsigned long load_addr, |
| unsigned long load_bias, |
| unsigned long interp_load_addr, int ibcs, |
| struct image_info *info) |
| { |
| target_ulong *argv, *envp; |
| target_ulong *sp, *csp; |
| target_ulong *u_platform; |
| const char *k_platform; |
| int v; |
| |
| /* |
| * Force 16 byte _final_ alignment here for generality. |
| */ |
| sp = (unsigned int *) (~15UL & (unsigned long) p); |
| u_platform = NULL; |
| k_platform = ELF_PLATFORM; |
| if (k_platform) { |
| size_t len = strlen(k_platform) + 1; |
| sp -= (len + sizeof(target_ulong) - 1) / sizeof(target_ulong); |
| u_platform = (target_ulong *)sp; |
| __copy_to_user(u_platform, k_platform, len); |
| } |
| csp = sp; |
| csp -= (DLINFO_ITEMS + 1) * 2; |
| if (k_platform) |
| csp -= 2; |
| #ifdef DLINFO_ARCH_ITEMS |
| csp -= DLINFO_ARCH_ITEMS*2; |
| #endif |
| csp -= envc+1; |
| csp -= argc+1; |
| csp -= (!ibcs ? 3 : 1); /* argc itself */ |
| if ((unsigned long)csp & 15UL) |
| sp -= ((unsigned long)csp & 15UL) / sizeof(*sp); |
| |
| #define NEW_AUX_ENT(id, val) \ |
| sp -= 2; \ |
| put_user (id, sp); \ |
| put_user (val, sp + 1) |
| NEW_AUX_ENT (AT_NULL, 0); |
| |
| /* There must be exactly DLINFO_ITEMS entries here. */ |
| NEW_AUX_ENT(AT_PHDR, (target_ulong)(load_addr + exec->e_phoff)); |
| NEW_AUX_ENT(AT_PHENT, (target_ulong)(sizeof (struct elf_phdr))); |
| NEW_AUX_ENT(AT_PHNUM, (target_ulong)(exec->e_phnum)); |
| NEW_AUX_ENT(AT_PAGESZ, (target_ulong)(TARGET_PAGE_SIZE)); |
| NEW_AUX_ENT(AT_BASE, (target_ulong)(interp_load_addr)); |
| NEW_AUX_ENT(AT_FLAGS, (target_ulong)0); |
| NEW_AUX_ENT(AT_ENTRY, load_bias + exec->e_entry); |
| NEW_AUX_ENT(AT_UID, (target_ulong) getuid()); |
| NEW_AUX_ENT(AT_EUID, (target_ulong) geteuid()); |
| NEW_AUX_ENT(AT_GID, (target_ulong) getgid()); |
| NEW_AUX_ENT(AT_EGID, (target_ulong) getegid()); |
| NEW_AUX_ENT(AT_HWCAP, (target_ulong) ELF_HWCAP); |
| if (k_platform) |
| NEW_AUX_ENT(AT_PLATFORM, (target_ulong) u_platform); |
| #ifdef ARCH_DLINFO |
| /* |
| * ARCH_DLINFO must come last so platform specific code can enforce |
| * special alignment requirements on the AUXV if necessary (eg. PPC). |
| */ |
| ARCH_DLINFO; |
| #endif |
| #undef NEW_AUX_ENT |
| |
| sp -= envc+1; |
| envp = sp; |
| sp -= argc+1; |
| argv = sp; |
| if (!ibcs) { |
| put_user((target_ulong)envp,--sp); |
| put_user((target_ulong)argv,--sp); |
| } |
| put_user(argc,--sp); |
| info->arg_start = (unsigned int)((unsigned long)p & 0xffffffff); |
| while (argc-->0) { |
| put_user((target_ulong)p,argv++); |
| do { |
| get_user(v, p); |
| p++; |
| } while (v != 0); |
| } |
| put_user(0,argv); |
| info->arg_end = info->env_start = (unsigned int)((unsigned long)p & 0xffffffff); |
| while (envc-->0) { |
| put_user((target_ulong)p,envp++); |
| do { |
| get_user(v, p); |
| p++; |
| } while (v != 0); |
| } |
| put_user(0,envp); |
| info->env_end = (unsigned int)((unsigned long)p & 0xffffffff); |
| return sp; |
| } |
| |
| |
| |
| static unsigned long load_elf_interp(struct elfhdr * interp_elf_ex, |
| int interpreter_fd, |
| unsigned long *interp_load_addr) |
| { |
| struct elf_phdr *elf_phdata = NULL; |
| struct elf_phdr *eppnt; |
| unsigned long load_addr = 0; |
| int load_addr_set = 0; |
| int retval; |
| unsigned long last_bss, elf_bss; |
| unsigned long error; |
| int i; |
| |
| elf_bss = 0; |
| last_bss = 0; |
| error = 0; |
| |
| #ifdef BSWAP_NEEDED |
| bswap_ehdr(interp_elf_ex); |
| #endif |
| /* First of all, some simple consistency checks */ |
| if ((interp_elf_ex->e_type != ET_EXEC && |
| interp_elf_ex->e_type != ET_DYN) || |
| !elf_check_arch(interp_elf_ex->e_machine)) { |
| return ~0UL; |
| } |
| |
| |
| /* Now read in all of the header information */ |
| |
| if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > TARGET_PAGE_SIZE) |
| return ~0UL; |
| |
| elf_phdata = (struct elf_phdr *) |
| malloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum); |
| |
| if (!elf_phdata) |
| return ~0UL; |
| |
| /* |
| * If the size of this structure has changed, then punt, since |
| * we will be doing the wrong thing. |
| */ |
| if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) { |
| free(elf_phdata); |
| return ~0UL; |
| } |
| |
| retval = lseek(interpreter_fd, interp_elf_ex->e_phoff, SEEK_SET); |
| if(retval >= 0) { |
| retval = read(interpreter_fd, |
| (char *) elf_phdata, |
| sizeof(struct elf_phdr) * interp_elf_ex->e_phnum); |
| } |
| if (retval < 0) { |
| perror("load_elf_interp"); |
| exit(-1); |
| free (elf_phdata); |
| return retval; |
| } |
| #ifdef BSWAP_NEEDED |
| eppnt = elf_phdata; |
| for (i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) { |
| bswap_phdr(eppnt); |
| } |
| #endif |
| |
| if (interp_elf_ex->e_type == ET_DYN) { |
| /* in order to avoid harcoding the interpreter load |
| address in qemu, we allocate a big enough memory zone */ |
| error = target_mmap(0, INTERP_MAP_SIZE, |
| PROT_NONE, MAP_PRIVATE | MAP_ANON, |
| -1, 0); |
| if (error == -1) { |
| perror("mmap"); |
| exit(-1); |
| } |
| load_addr = error; |
| load_addr_set = 1; |
| } |
| |
| eppnt = elf_phdata; |
| for(i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) |
| if (eppnt->p_type == PT_LOAD) { |
| int elf_type = MAP_PRIVATE | MAP_DENYWRITE; |
| int elf_prot = 0; |
| unsigned long vaddr = 0; |
| unsigned long k; |
| |
| if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; |
| if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; |
| if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; |
| if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) { |
| elf_type |= MAP_FIXED; |
| vaddr = eppnt->p_vaddr; |
| } |
| error = target_mmap(load_addr+TARGET_ELF_PAGESTART(vaddr), |
| eppnt->p_filesz + TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr), |
| elf_prot, |
| elf_type, |
| interpreter_fd, |
| eppnt->p_offset - TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr)); |
| |
| if (error > -1024UL) { |
| /* Real error */ |
| close(interpreter_fd); |
| free(elf_phdata); |
| return ~0UL; |
| } |
| |
| if (!load_addr_set && interp_elf_ex->e_type == ET_DYN) { |
| load_addr = error; |
| load_addr_set = 1; |
| } |
| |
| /* |
| * Find the end of the file mapping for this phdr, and keep |
| * track of the largest address we see for this. |
| */ |
| k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; |
| if (k > elf_bss) elf_bss = k; |
| |
| /* |
| * Do the same thing for the memory mapping - between |
| * elf_bss and last_bss is the bss section. |
| */ |
| k = load_addr + eppnt->p_memsz + eppnt->p_vaddr; |
| if (k > last_bss) last_bss = k; |
| } |
| |
| /* Now use mmap to map the library into memory. */ |
| |
| close(interpreter_fd); |
| |
| /* |
| * Now fill out the bss section. First pad the last page up |
| * to the page boundary, and then perform a mmap to make sure |
| * that there are zeromapped pages up to and including the last |
| * bss page. |
| */ |
| padzero(elf_bss); |
| elf_bss = TARGET_ELF_PAGESTART(elf_bss + qemu_host_page_size - 1); /* What we have mapped so far */ |
| |
| /* Map the last of the bss segment */ |
| if (last_bss > elf_bss) { |
| target_mmap(elf_bss, last_bss-elf_bss, |
| PROT_READ|PROT_WRITE|PROT_EXEC, |
| MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); |
| } |
| free(elf_phdata); |
| |
| *interp_load_addr = load_addr; |
| return ((unsigned long) interp_elf_ex->e_entry) + load_addr; |
| } |
| |
| /* Best attempt to load symbols from this ELF object. */ |
| static void load_symbols(struct elfhdr *hdr, int fd) |
| { |
| unsigned int i; |
| struct elf_shdr sechdr, symtab, strtab; |
| char *strings; |
| struct syminfo *s; |
| |
| lseek(fd, hdr->e_shoff, SEEK_SET); |
| for (i = 0; i < hdr->e_shnum; i++) { |
| if (read(fd, &sechdr, sizeof(sechdr)) != sizeof(sechdr)) |
| return; |
| #ifdef BSWAP_NEEDED |
| bswap_shdr(&sechdr); |
| #endif |
| if (sechdr.sh_type == SHT_SYMTAB) { |
| symtab = sechdr; |
| lseek(fd, hdr->e_shoff |
| + sizeof(sechdr) * sechdr.sh_link, SEEK_SET); |
| if (read(fd, &strtab, sizeof(strtab)) |
| != sizeof(strtab)) |
| return; |
| #ifdef BSWAP_NEEDED |
| bswap_shdr(&strtab); |
| #endif |
| goto found; |
| } |
| } |
| return; /* Shouldn't happen... */ |
| |
| found: |
| /* Now know where the strtab and symtab are. Snarf them. */ |
| s = malloc(sizeof(*s)); |
| s->disas_symtab = malloc(symtab.sh_size); |
| s->disas_strtab = strings = malloc(strtab.sh_size); |
| if (!s->disas_symtab || !s->disas_strtab) |
| return; |
| |
| lseek(fd, symtab.sh_offset, SEEK_SET); |
| if (read(fd, s->disas_symtab, symtab.sh_size) != symtab.sh_size) |
| return; |
| |
| #ifdef BSWAP_NEEDED |
| for (i = 0; i < symtab.sh_size / sizeof(struct elf_sym); i++) |
| bswap_sym(s->disas_symtab + sizeof(struct elf_sym)*i); |
| #endif |
| |
| lseek(fd, strtab.sh_offset, SEEK_SET); |
| if (read(fd, strings, strtab.sh_size) != strtab.sh_size) |
| return; |
| s->disas_num_syms = symtab.sh_size / sizeof(struct elf_sym); |
| s->next = syminfos; |
| syminfos = s; |
| } |
| |
| static int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, |
| struct image_info * info) |
| { |
| struct elfhdr elf_ex; |
| struct elfhdr interp_elf_ex; |
| struct exec interp_ex; |
| int interpreter_fd = -1; /* avoid warning */ |
| unsigned long load_addr, load_bias; |
| int load_addr_set = 0; |
| unsigned int interpreter_type = INTERPRETER_NONE; |
| unsigned char ibcs2_interpreter; |
| int i; |
| unsigned long mapped_addr; |
| struct elf_phdr * elf_ppnt; |
| struct elf_phdr *elf_phdata; |
| unsigned long elf_bss, k, elf_brk; |
| int retval; |
| char * elf_interpreter; |
| unsigned long elf_entry, interp_load_addr = 0; |
| int status; |
| unsigned long start_code, end_code, end_data; |
| unsigned long elf_stack; |
| char passed_fileno[6]; |
| |
| ibcs2_interpreter = 0; |
| status = 0; |
| load_addr = 0; |
| load_bias = 0; |
| elf_ex = *((struct elfhdr *) bprm->buf); /* exec-header */ |
| #ifdef BSWAP_NEEDED |
| bswap_ehdr(&elf_ex); |
| #endif |
| |
| if (elf_ex.e_ident[0] != 0x7f || |
| strncmp(&elf_ex.e_ident[1], "ELF",3) != 0) { |
| return -ENOEXEC; |
| } |
| |
| /* First of all, some simple consistency checks */ |
| if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) || |
| (! elf_check_arch(elf_ex.e_machine))) { |
| return -ENOEXEC; |
| } |
| |
| /* Now read in all of the header information */ |
| elf_phdata = (struct elf_phdr *)malloc(elf_ex.e_phentsize*elf_ex.e_phnum); |
| if (elf_phdata == NULL) { |
| return -ENOMEM; |
| } |
| |
| retval = lseek(bprm->fd, elf_ex.e_phoff, SEEK_SET); |
| if(retval > 0) { |
| retval = read(bprm->fd, (char *) elf_phdata, |
| elf_ex.e_phentsize * elf_ex.e_phnum); |
| } |
| |
| if (retval < 0) { |
| perror("load_elf_binary"); |
| exit(-1); |
| free (elf_phdata); |
| return -errno; |
| } |
| |
| #ifdef BSWAP_NEEDED |
| elf_ppnt = elf_phdata; |
| for (i=0; i<elf_ex.e_phnum; i++, elf_ppnt++) { |
| bswap_phdr(elf_ppnt); |
| } |
| #endif |
| elf_ppnt = elf_phdata; |
| |
| elf_bss = 0; |
| elf_brk = 0; |
| |
| |
| elf_stack = ~0UL; |
| elf_interpreter = NULL; |
| start_code = ~0UL; |
| end_code = 0; |
| end_data = 0; |
| |
| for(i=0;i < elf_ex.e_phnum; i++) { |
| if (elf_ppnt->p_type == PT_INTERP) { |
| if ( elf_interpreter != NULL ) |
| { |
| free (elf_phdata); |
| free(elf_interpreter); |
| close(bprm->fd); |
| return -EINVAL; |
| } |
| |
| /* This is the program interpreter used for |
| * shared libraries - for now assume that this |
| * is an a.out format binary |
| */ |
| |
| elf_interpreter = (char *)malloc(elf_ppnt->p_filesz); |
| |
| if (elf_interpreter == NULL) { |
| free (elf_phdata); |
| close(bprm->fd); |
| return -ENOMEM; |
| } |
| |
| retval = lseek(bprm->fd, elf_ppnt->p_offset, SEEK_SET); |
| if(retval >= 0) { |
| retval = read(bprm->fd, elf_interpreter, elf_ppnt->p_filesz); |
| } |
| if(retval < 0) { |
| perror("load_elf_binary2"); |
| exit(-1); |
| } |
| |
| /* If the program interpreter is one of these two, |
| then assume an iBCS2 image. Otherwise assume |
| a native linux image. */ |
| |
| /* JRP - Need to add X86 lib dir stuff here... */ |
| |
| if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 || |
| strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0) { |
| ibcs2_interpreter = 1; |
| } |
| |
| #if 0 |
| printf("Using ELF interpreter %s\n", elf_interpreter); |
| #endif |
| if (retval >= 0) { |
| retval = open(path(elf_interpreter), O_RDONLY); |
| if(retval >= 0) { |
| interpreter_fd = retval; |
| } |
| else { |
| perror(elf_interpreter); |
| exit(-1); |
| /* retval = -errno; */ |
| } |
| } |
| |
| if (retval >= 0) { |
| retval = lseek(interpreter_fd, 0, SEEK_SET); |
| if(retval >= 0) { |
| retval = read(interpreter_fd,bprm->buf,128); |
| } |
| } |
| if (retval >= 0) { |
| interp_ex = *((struct exec *) bprm->buf); /* aout exec-header */ |
| interp_elf_ex=*((struct elfhdr *) bprm->buf); /* elf exec-header */ |
| } |
| if (retval < 0) { |
| perror("load_elf_binary3"); |
| exit(-1); |
| free (elf_phdata); |
| free(elf_interpreter); |
| close(bprm->fd); |
| return retval; |
| } |
| } |
| elf_ppnt++; |
| } |
| |
| /* Some simple consistency checks for the interpreter */ |
| if (elf_interpreter){ |
| interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT; |
| |
| /* Now figure out which format our binary is */ |
| if ((N_MAGIC(interp_ex) != OMAGIC) && (N_MAGIC(interp_ex) != ZMAGIC) && |
| (N_MAGIC(interp_ex) != QMAGIC)) { |
| interpreter_type = INTERPRETER_ELF; |
| } |
| |
| if (interp_elf_ex.e_ident[0] != 0x7f || |
| strncmp(&interp_elf_ex.e_ident[1], "ELF",3) != 0) { |
| interpreter_type &= ~INTERPRETER_ELF; |
| } |
| |
| if (!interpreter_type) { |
| free(elf_interpreter); |
| free(elf_phdata); |
| close(bprm->fd); |
| return -ELIBBAD; |
| } |
| } |
| |
| /* OK, we are done with that, now set up the arg stuff, |
| and then start this sucker up */ |
| |
| if (!bprm->sh_bang) { |
| char * passed_p; |
| |
| if (interpreter_type == INTERPRETER_AOUT) { |
| snprintf(passed_fileno, sizeof(passed_fileno), "%d", bprm->fd); |
| passed_p = passed_fileno; |
| |
| if (elf_interpreter) { |
| bprm->p = copy_strings(1,&passed_p,bprm->page,bprm->p); |
| bprm->argc++; |
| } |
| } |
| if (!bprm->p) { |
| if (elf_interpreter) { |
| free(elf_interpreter); |
| } |
| free (elf_phdata); |
| close(bprm->fd); |
| return -E2BIG; |
| } |
| } |
| |
| /* OK, This is the point of no return */ |
| info->end_data = 0; |
| info->end_code = 0; |
| info->start_mmap = (unsigned long)ELF_START_MMAP; |
| info->mmap = 0; |
| elf_entry = (unsigned long) elf_ex.e_entry; |
| |
| /* Do this so that we can load the interpreter, if need be. We will |
| change some of these later */ |
| info->rss = 0; |
| bprm->p = setup_arg_pages(bprm->p, bprm, info); |
| info->start_stack = bprm->p; |
| |
| /* Now we do a little grungy work by mmaping the ELF image into |
| * the correct location in memory. At this point, we assume that |
| * the image should be loaded at fixed address, not at a variable |
| * address. |
| */ |
| |
| for(i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) { |
| int elf_prot = 0; |
| int elf_flags = 0; |
| unsigned long error; |
| |
| if (elf_ppnt->p_type != PT_LOAD) |
| continue; |
| |
| if (elf_ppnt->p_flags & PF_R) elf_prot |= PROT_READ; |
| if (elf_ppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; |
| if (elf_ppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; |
| elf_flags = MAP_PRIVATE | MAP_DENYWRITE; |
| if (elf_ex.e_type == ET_EXEC || load_addr_set) { |
| elf_flags |= MAP_FIXED; |
| } else if (elf_ex.e_type == ET_DYN) { |
| /* Try and get dynamic programs out of the way of the default mmap |
| base, as well as whatever program they might try to exec. This |
| is because the brk will follow the loader, and is not movable. */ |
| /* NOTE: for qemu, we do a big mmap to get enough space |
| without harcoding any address */ |
| error = target_mmap(0, ET_DYN_MAP_SIZE, |
| PROT_NONE, MAP_PRIVATE | MAP_ANON, |
| -1, 0); |
| if (error == -1) { |
| perror("mmap"); |
| exit(-1); |
| } |
| load_bias = TARGET_ELF_PAGESTART(error - elf_ppnt->p_vaddr); |
| } |
| |
| error = target_mmap(TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr), |
| (elf_ppnt->p_filesz + |
| TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)), |
| elf_prot, |
| (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE), |
| bprm->fd, |
| (elf_ppnt->p_offset - |
| TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr))); |
| if (error == -1) { |
| perror("mmap"); |
| exit(-1); |
| } |
| |
| #ifdef LOW_ELF_STACK |
| if (TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr) < elf_stack) |
| elf_stack = TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr); |
| #endif |
| |
| if (!load_addr_set) { |
| load_addr_set = 1; |
| load_addr = elf_ppnt->p_vaddr - elf_ppnt->p_offset; |
| if (elf_ex.e_type == ET_DYN) { |
| load_bias += error - |
| TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr); |
| load_addr += load_bias; |
| } |
| } |
| k = elf_ppnt->p_vaddr; |
| if (k < start_code) |
| start_code = k; |
| k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; |
| if (k > elf_bss) |
| elf_bss = k; |
| if ((elf_ppnt->p_flags & PF_X) && end_code < k) |
| end_code = k; |
| if (end_data < k) |
| end_data = k; |
| k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; |
| if (k > elf_brk) elf_brk = k; |
| } |
| |
| elf_entry += load_bias; |
| elf_bss += load_bias; |
| elf_brk += load_bias; |
| start_code += load_bias; |
| end_code += load_bias; |
| // start_data += load_bias; |
| end_data += load_bias; |
| |
| if (elf_interpreter) { |
| if (interpreter_type & 1) { |
| elf_entry = load_aout_interp(&interp_ex, interpreter_fd); |
| } |
| else if (interpreter_type & 2) { |
| elf_entry = load_elf_interp(&interp_elf_ex, interpreter_fd, |
| &interp_load_addr); |
| } |
| |
| close(interpreter_fd); |
| free(elf_interpreter); |
| |
| if (elf_entry == ~0UL) { |
| printf("Unable to load interpreter\n"); |
| free(elf_phdata); |
| exit(-1); |
| return 0; |
| } |
| } |
| |
| free(elf_phdata); |
| |
| if (loglevel) |
| load_symbols(&elf_ex, bprm->fd); |
| |
| if (interpreter_type != INTERPRETER_AOUT) close(bprm->fd); |
| info->personality = (ibcs2_interpreter ? PER_SVR4 : PER_LINUX); |
| |
| #ifdef LOW_ELF_STACK |
| info->start_stack = bprm->p = elf_stack - 4; |
| #endif |
| bprm->p = (unsigned long) |
| create_elf_tables((char *)bprm->p, |
| bprm->argc, |
| bprm->envc, |
| &elf_ex, |
| load_addr, load_bias, |
| interp_load_addr, |
| (interpreter_type == INTERPRETER_AOUT ? 0 : 1), |
| info); |
| if (interpreter_type == INTERPRETER_AOUT) |
| info->arg_start += strlen(passed_fileno) + 1; |
| info->start_brk = info->brk = elf_brk; |
| info->end_code = end_code; |
| info->start_code = start_code; |
| info->end_data = end_data; |
| info->start_stack = bprm->p; |
| |
| /* Calling set_brk effectively mmaps the pages that we need for the bss and break |
| sections */ |
| set_brk(elf_bss, elf_brk); |
| |
| padzero(elf_bss); |
| |
| #if 0 |
| printf("(start_brk) %x\n" , info->start_brk); |
| printf("(end_code) %x\n" , info->end_code); |
| printf("(start_code) %x\n" , info->start_code); |
| printf("(end_data) %x\n" , info->end_data); |
| printf("(start_stack) %x\n" , info->start_stack); |
| printf("(brk) %x\n" , info->brk); |
| #endif |
| |
| if ( info->personality == PER_SVR4 ) |
| { |
| /* Why this, you ask??? Well SVr4 maps page 0 as read-only, |
| and some applications "depend" upon this behavior. |
| Since we do not have the power to recompile these, we |
| emulate the SVr4 behavior. Sigh. */ |
| mapped_addr = target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, |
| MAP_FIXED | MAP_PRIVATE, -1, 0); |
| } |
| |
| #ifdef ELF_PLAT_INIT |
| /* |
| * The ABI may specify that certain registers be set up in special |
| * ways (on i386 %edx is the address of a DT_FINI function, for |
| * example. This macro performs whatever initialization to |
| * the regs structure is required. |
| */ |
| ELF_PLAT_INIT(regs); |
| #endif |
| |
| |
| info->entry = elf_entry; |
| |
| return 0; |
| } |
| |
| |
| |
| int elf_exec(const char * filename, char ** argv, char ** envp, |
| struct target_pt_regs * regs, struct image_info *infop) |
| { |
| struct linux_binprm bprm; |
| int retval; |
| int i; |
| |
| bprm.p = TARGET_PAGE_SIZE*MAX_ARG_PAGES-sizeof(unsigned int); |
| for (i=0 ; i<MAX_ARG_PAGES ; i++) /* clear page-table */ |
| bprm.page[i] = 0; |
| retval = open(filename, O_RDONLY); |
| if (retval < 0) |
| return retval; |
| bprm.fd = retval; |
| bprm.filename = (char *)filename; |
| bprm.sh_bang = 0; |
| bprm.loader = 0; |
| bprm.exec = 0; |
| bprm.dont_iput = 0; |
| bprm.argc = count(argv); |
| bprm.envc = count(envp); |
| |
| retval = prepare_binprm(&bprm); |
| |
| if(retval>=0) { |
| bprm.p = copy_strings(1, &bprm.filename, bprm.page, bprm.p); |
| bprm.exec = bprm.p; |
| bprm.p = copy_strings(bprm.envc,envp,bprm.page,bprm.p); |
| bprm.p = copy_strings(bprm.argc,argv,bprm.page,bprm.p); |
| if (!bprm.p) { |
| retval = -E2BIG; |
| } |
| } |
| |
| if(retval>=0) { |
| retval = load_elf_binary(&bprm,regs,infop); |
| } |
| if(retval>=0) { |
| /* success. Initialize important registers */ |
| init_thread(regs, infop); |
| return retval; |
| } |
| |
| /* Something went wrong, return the inode and free the argument pages*/ |
| for (i=0 ; i<MAX_ARG_PAGES ; i++) { |
| free_page((void *)bprm.page[i]); |
| } |
| return(retval); |
| } |
| |
| |
| static int load_aout_interp(void * exptr, int interp_fd) |
| { |
| printf("a.out interpreter not yet supported\n"); |
| return(0); |
| } |
| |