| /* |
| * QEMU sPAPR PCI host originated from Uninorth PCI host |
| * |
| * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. |
| * Copyright (C) 2011 David Gibson, IBM Corporation. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "hw/hw.h" |
| #include "hw/pci/pci.h" |
| #include "hw/pci/msi.h" |
| #include "hw/pci/msix.h" |
| #include "hw/pci/pci_host.h" |
| #include "hw/ppc/spapr.h" |
| #include "hw/pci-host/spapr.h" |
| #include "exec/address-spaces.h" |
| #include <libfdt.h> |
| #include "trace.h" |
| #include "qemu/error-report.h" |
| |
| #include "hw/pci/pci_bus.h" |
| |
| /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */ |
| #define RTAS_QUERY_FN 0 |
| #define RTAS_CHANGE_FN 1 |
| #define RTAS_RESET_FN 2 |
| #define RTAS_CHANGE_MSI_FN 3 |
| #define RTAS_CHANGE_MSIX_FN 4 |
| |
| /* Interrupt types to return on RTAS_CHANGE_* */ |
| #define RTAS_TYPE_MSI 1 |
| #define RTAS_TYPE_MSIX 2 |
| |
| static sPAPRPHBState *find_phb(sPAPREnvironment *spapr, uint64_t buid) |
| { |
| sPAPRPHBState *sphb; |
| |
| QLIST_FOREACH(sphb, &spapr->phbs, list) { |
| if (sphb->buid != buid) { |
| continue; |
| } |
| return sphb; |
| } |
| |
| return NULL; |
| } |
| |
| static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid, |
| uint32_t config_addr) |
| { |
| sPAPRPHBState *sphb = find_phb(spapr, buid); |
| PCIHostState *phb = PCI_HOST_BRIDGE(sphb); |
| int bus_num = (config_addr >> 16) & 0xFF; |
| int devfn = (config_addr >> 8) & 0xFF; |
| |
| if (!phb) { |
| return NULL; |
| } |
| |
| return pci_find_device(phb->bus, bus_num, devfn); |
| } |
| |
| static uint32_t rtas_pci_cfgaddr(uint32_t arg) |
| { |
| /* This handles the encoding of extended config space addresses */ |
| return ((arg >> 20) & 0xf00) | (arg & 0xff); |
| } |
| |
| static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid, |
| uint32_t addr, uint32_t size, |
| target_ulong rets) |
| { |
| PCIDevice *pci_dev; |
| uint32_t val; |
| |
| if ((size != 1) && (size != 2) && (size != 4)) { |
| /* access must be 1, 2 or 4 bytes */ |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| pci_dev = find_dev(spapr, buid, addr); |
| addr = rtas_pci_cfgaddr(addr); |
| |
| if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { |
| /* Access must be to a valid device, within bounds and |
| * naturally aligned */ |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| val = pci_host_config_read_common(pci_dev, addr, |
| pci_config_size(pci_dev), size); |
| |
| rtas_st(rets, 0, RTAS_OUT_SUCCESS); |
| rtas_st(rets, 1, val); |
| } |
| |
| static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, |
| uint32_t nret, target_ulong rets) |
| { |
| uint64_t buid; |
| uint32_t size, addr; |
| |
| if ((nargs != 4) || (nret != 2)) { |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); |
| size = rtas_ld(args, 3); |
| addr = rtas_ld(args, 0); |
| |
| finish_read_pci_config(spapr, buid, addr, size, rets); |
| } |
| |
| static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, |
| uint32_t nret, target_ulong rets) |
| { |
| uint32_t size, addr; |
| |
| if ((nargs != 2) || (nret != 2)) { |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| size = rtas_ld(args, 1); |
| addr = rtas_ld(args, 0); |
| |
| finish_read_pci_config(spapr, 0, addr, size, rets); |
| } |
| |
| static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid, |
| uint32_t addr, uint32_t size, |
| uint32_t val, target_ulong rets) |
| { |
| PCIDevice *pci_dev; |
| |
| if ((size != 1) && (size != 2) && (size != 4)) { |
| /* access must be 1, 2 or 4 bytes */ |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| pci_dev = find_dev(spapr, buid, addr); |
| addr = rtas_pci_cfgaddr(addr); |
| |
| if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) { |
| /* Access must be to a valid device, within bounds and |
| * naturally aligned */ |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev), |
| val, size); |
| |
| rtas_st(rets, 0, RTAS_OUT_SUCCESS); |
| } |
| |
| static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, |
| uint32_t nret, target_ulong rets) |
| { |
| uint64_t buid; |
| uint32_t val, size, addr; |
| |
| if ((nargs != 5) || (nret != 1)) { |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); |
| val = rtas_ld(args, 4); |
| size = rtas_ld(args, 3); |
| addr = rtas_ld(args, 0); |
| |
| finish_write_pci_config(spapr, buid, addr, size, val, rets); |
| } |
| |
| static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, |
| uint32_t nret, target_ulong rets) |
| { |
| uint32_t val, size, addr; |
| |
| if ((nargs != 3) || (nret != 1)) { |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| |
| val = rtas_ld(args, 2); |
| size = rtas_ld(args, 1); |
| addr = rtas_ld(args, 0); |
| |
| finish_write_pci_config(spapr, 0, addr, size, val, rets); |
| } |
| |
| /* |
| * Set MSI/MSIX message data. |
| * This is required for msi_notify()/msix_notify() which |
| * will write at the addresses via spapr_msi_write(). |
| * |
| * If hwaddr == 0, all entries will have .data == first_irq i.e. |
| * table will be reset. |
| */ |
| static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix, |
| unsigned first_irq, unsigned req_num) |
| { |
| unsigned i; |
| MSIMessage msg = { .address = addr, .data = first_irq }; |
| |
| if (!msix) { |
| msi_set_message(pdev, msg); |
| trace_spapr_pci_msi_setup(pdev->name, 0, msg.address); |
| return; |
| } |
| |
| for (i = 0; i < req_num; ++i) { |
| msix_set_message(pdev, i, msg); |
| trace_spapr_pci_msi_setup(pdev->name, i, msg.address); |
| if (addr) { |
| ++msg.data; |
| } |
| } |
| } |
| |
| static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPREnvironment *spapr, |
| uint32_t token, uint32_t nargs, |
| target_ulong args, uint32_t nret, |
| target_ulong rets) |
| { |
| uint32_t config_addr = rtas_ld(args, 0); |
| uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); |
| unsigned int func = rtas_ld(args, 3); |
| unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */ |
| unsigned int seq_num = rtas_ld(args, 5); |
| unsigned int ret_intr_type; |
| unsigned int irq, max_irqs = 0, num = 0; |
| sPAPRPHBState *phb = NULL; |
| PCIDevice *pdev = NULL; |
| spapr_pci_msi *msi; |
| int *config_addr_key; |
| |
| switch (func) { |
| case RTAS_CHANGE_MSI_FN: |
| case RTAS_CHANGE_FN: |
| ret_intr_type = RTAS_TYPE_MSI; |
| break; |
| case RTAS_CHANGE_MSIX_FN: |
| ret_intr_type = RTAS_TYPE_MSIX; |
| break; |
| default: |
| error_report("rtas_ibm_change_msi(%u) is not implemented", func); |
| rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); |
| return; |
| } |
| |
| /* Fins sPAPRPHBState */ |
| phb = find_phb(spapr, buid); |
| if (phb) { |
| pdev = find_dev(spapr, buid, config_addr); |
| } |
| if (!phb || !pdev) { |
| rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); |
| return; |
| } |
| |
| /* Releasing MSIs */ |
| if (!req_num) { |
| msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); |
| if (!msi) { |
| trace_spapr_pci_msi("Releasing wrong config", config_addr); |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| xics_free(spapr->icp, msi->first_irq, msi->num); |
| if (msi_present(pdev)) { |
| spapr_msi_setmsg(pdev, 0, false, 0, num); |
| } |
| if (msix_present(pdev)) { |
| spapr_msi_setmsg(pdev, 0, true, 0, num); |
| } |
| g_hash_table_remove(phb->msi, &config_addr); |
| |
| trace_spapr_pci_msi("Released MSIs", config_addr); |
| rtas_st(rets, 0, RTAS_OUT_SUCCESS); |
| rtas_st(rets, 1, 0); |
| return; |
| } |
| |
| /* Enabling MSI */ |
| |
| /* Check if the device supports as many IRQs as requested */ |
| if (ret_intr_type == RTAS_TYPE_MSI) { |
| max_irqs = msi_nr_vectors_allocated(pdev); |
| } else if (ret_intr_type == RTAS_TYPE_MSIX) { |
| max_irqs = pdev->msix_entries_nr; |
| } |
| if (!max_irqs) { |
| error_report("Requested interrupt type %d is not enabled for device %x", |
| ret_intr_type, config_addr); |
| rtas_st(rets, 0, -1); /* Hardware error */ |
| return; |
| } |
| /* Correct the number if the guest asked for too many */ |
| if (req_num > max_irqs) { |
| trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs); |
| req_num = max_irqs; |
| irq = 0; /* to avoid misleading trace */ |
| goto out; |
| } |
| |
| /* Allocate MSIs */ |
| irq = xics_alloc_block(spapr->icp, 0, req_num, false, |
| ret_intr_type == RTAS_TYPE_MSI); |
| if (!irq) { |
| error_report("Cannot allocate MSIs for device %x", config_addr); |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| |
| /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */ |
| spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX, |
| irq, req_num); |
| |
| /* Add MSI device to cache */ |
| msi = g_new(spapr_pci_msi, 1); |
| msi->first_irq = irq; |
| msi->num = req_num; |
| config_addr_key = g_new(int, 1); |
| *config_addr_key = config_addr; |
| g_hash_table_insert(phb->msi, config_addr_key, msi); |
| |
| out: |
| rtas_st(rets, 0, RTAS_OUT_SUCCESS); |
| rtas_st(rets, 1, req_num); |
| rtas_st(rets, 2, ++seq_num); |
| rtas_st(rets, 3, ret_intr_type); |
| |
| trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq); |
| } |
| |
| static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu, |
| sPAPREnvironment *spapr, |
| uint32_t token, |
| uint32_t nargs, |
| target_ulong args, |
| uint32_t nret, |
| target_ulong rets) |
| { |
| uint32_t config_addr = rtas_ld(args, 0); |
| uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); |
| unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3); |
| sPAPRPHBState *phb = NULL; |
| PCIDevice *pdev = NULL; |
| spapr_pci_msi *msi; |
| |
| /* Find sPAPRPHBState */ |
| phb = find_phb(spapr, buid); |
| if (phb) { |
| pdev = find_dev(spapr, buid, config_addr); |
| } |
| if (!phb || !pdev) { |
| rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); |
| return; |
| } |
| |
| /* Find device descriptor and start IRQ */ |
| msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr); |
| if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) { |
| trace_spapr_pci_msi("Failed to return vector", config_addr); |
| rtas_st(rets, 0, RTAS_OUT_HW_ERROR); |
| return; |
| } |
| intr_src_num = msi->first_irq + ioa_intr_num; |
| trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num, |
| intr_src_num); |
| |
| rtas_st(rets, 0, RTAS_OUT_SUCCESS); |
| rtas_st(rets, 1, intr_src_num); |
| rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */ |
| } |
| |
| static int pci_spapr_swizzle(int slot, int pin) |
| { |
| return (slot + pin) % PCI_NUM_PINS; |
| } |
| |
| static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num) |
| { |
| /* |
| * Here we need to convert pci_dev + irq_num to some unique value |
| * which is less than number of IRQs on the specific bus (4). We |
| * use standard PCI swizzling, that is (slot number + pin number) |
| * % 4. |
| */ |
| return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num); |
| } |
| |
| static void pci_spapr_set_irq(void *opaque, int irq_num, int level) |
| { |
| /* |
| * Here we use the number returned by pci_spapr_map_irq to find a |
| * corresponding qemu_irq. |
| */ |
| sPAPRPHBState *phb = opaque; |
| |
| trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq); |
| qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level); |
| } |
| |
| static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin) |
| { |
| sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque); |
| PCIINTxRoute route; |
| |
| route.mode = PCI_INTX_ENABLED; |
| route.irq = sphb->lsi_table[pin].irq; |
| |
| return route; |
| } |
| |
| /* |
| * MSI/MSIX memory region implementation. |
| * The handler handles both MSI and MSIX. |
| * For MSI-X, the vector number is encoded as a part of the address, |
| * data is set to 0. |
| * For MSI, the vector number is encoded in least bits in data. |
| */ |
| static void spapr_msi_write(void *opaque, hwaddr addr, |
| uint64_t data, unsigned size) |
| { |
| uint32_t irq = data; |
| |
| trace_spapr_pci_msi_write(addr, data, irq); |
| |
| qemu_irq_pulse(xics_get_qirq(spapr->icp, irq)); |
| } |
| |
| static const MemoryRegionOps spapr_msi_ops = { |
| /* There is no .read as the read result is undefined by PCI spec */ |
| .read = NULL, |
| .write = spapr_msi_write, |
| .endianness = DEVICE_LITTLE_ENDIAN |
| }; |
| |
| /* |
| * PHB PCI device |
| */ |
| static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn) |
| { |
| sPAPRPHBState *phb = opaque; |
| |
| return &phb->iommu_as; |
| } |
| |
| static void spapr_phb_realize(DeviceState *dev, Error **errp) |
| { |
| SysBusDevice *s = SYS_BUS_DEVICE(dev); |
| sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s); |
| PCIHostState *phb = PCI_HOST_BRIDGE(s); |
| sPAPRPHBClass *info = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s); |
| char *namebuf; |
| int i; |
| PCIBus *bus; |
| uint64_t msi_window_size = 4096; |
| |
| if (sphb->index != -1) { |
| hwaddr windows_base; |
| |
| if ((sphb->buid != -1) || (sphb->dma_liobn != -1) |
| || (sphb->mem_win_addr != -1) |
| || (sphb->io_win_addr != -1)) { |
| error_setg(errp, "Either \"index\" or other parameters must" |
| " be specified for PAPR PHB, not both"); |
| return; |
| } |
| |
| sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index; |
| sphb->dma_liobn = SPAPR_PCI_BASE_LIOBN + sphb->index; |
| |
| windows_base = SPAPR_PCI_WINDOW_BASE |
| + sphb->index * SPAPR_PCI_WINDOW_SPACING; |
| sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF; |
| sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF; |
| } |
| |
| if (sphb->buid == -1) { |
| error_setg(errp, "BUID not specified for PHB"); |
| return; |
| } |
| |
| if (sphb->dma_liobn == -1) { |
| error_setg(errp, "LIOBN not specified for PHB"); |
| return; |
| } |
| |
| if (sphb->mem_win_addr == -1) { |
| error_setg(errp, "Memory window address not specified for PHB"); |
| return; |
| } |
| |
| if (sphb->io_win_addr == -1) { |
| error_setg(errp, "IO window address not specified for PHB"); |
| return; |
| } |
| |
| if (find_phb(spapr, sphb->buid)) { |
| error_setg(errp, "PCI host bridges must have unique BUIDs"); |
| return; |
| } |
| |
| sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid); |
| |
| namebuf = alloca(strlen(sphb->dtbusname) + 32); |
| |
| /* Initialize memory regions */ |
| sprintf(namebuf, "%s.mmio", sphb->dtbusname); |
| memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX); |
| |
| sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname); |
| memory_region_init_alias(&sphb->memwindow, OBJECT(sphb), |
| namebuf, &sphb->memspace, |
| SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size); |
| memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr, |
| &sphb->memwindow); |
| |
| /* Initialize IO regions */ |
| sprintf(namebuf, "%s.io", sphb->dtbusname); |
| memory_region_init(&sphb->iospace, OBJECT(sphb), |
| namebuf, SPAPR_PCI_IO_WIN_SIZE); |
| |
| sprintf(namebuf, "%s.io-alias", sphb->dtbusname); |
| memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf, |
| &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE); |
| memory_region_add_subregion(get_system_memory(), sphb->io_win_addr, |
| &sphb->iowindow); |
| |
| bus = pci_register_bus(dev, NULL, |
| pci_spapr_set_irq, pci_spapr_map_irq, sphb, |
| &sphb->memspace, &sphb->iospace, |
| PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS); |
| phb->bus = bus; |
| |
| /* |
| * Initialize PHB address space. |
| * By default there will be at least one subregion for default |
| * 32bit DMA window. |
| * Later the guest might want to create another DMA window |
| * which will become another memory subregion. |
| */ |
| sprintf(namebuf, "%s.iommu-root", sphb->dtbusname); |
| |
| memory_region_init(&sphb->iommu_root, OBJECT(sphb), |
| namebuf, UINT64_MAX); |
| address_space_init(&sphb->iommu_as, &sphb->iommu_root, |
| sphb->dtbusname); |
| |
| /* |
| * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors, |
| * we need to allocate some memory to catch those writes coming |
| * from msi_notify()/msix_notify(). |
| * As MSIMessage:addr is going to be the same and MSIMessage:data |
| * is going to be a VIRQ number, 4 bytes of the MSI MR will only |
| * be used. |
| * |
| * For KVM we want to ensure that this memory is a full page so that |
| * our memory slot is of page size granularity. |
| */ |
| #ifdef CONFIG_KVM |
| if (kvm_enabled()) { |
| msi_window_size = getpagesize(); |
| } |
| #endif |
| |
| memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr, |
| "msi", msi_window_size); |
| memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW, |
| &sphb->msiwindow); |
| |
| pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb); |
| |
| pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq); |
| |
| QLIST_INSERT_HEAD(&spapr->phbs, sphb, list); |
| |
| /* Initialize the LSI table */ |
| for (i = 0; i < PCI_NUM_PINS; i++) { |
| uint32_t irq; |
| |
| irq = xics_alloc_block(spapr->icp, 0, 1, true, false); |
| if (!irq) { |
| error_setg(errp, "spapr_allocate_lsi failed"); |
| return; |
| } |
| |
| sphb->lsi_table[i].irq = irq; |
| } |
| |
| if (!info->finish_realize) { |
| error_setg(errp, "finish_realize not defined"); |
| return; |
| } |
| |
| info->finish_realize(sphb, errp); |
| |
| sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free); |
| } |
| |
| static void spapr_phb_finish_realize(sPAPRPHBState *sphb, Error **errp) |
| { |
| sPAPRTCETable *tcet; |
| |
| tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn, |
| 0, |
| SPAPR_TCE_PAGE_SHIFT, |
| 0x40000000 >> SPAPR_TCE_PAGE_SHIFT, false); |
| if (!tcet) { |
| error_setg(errp, "Unable to create TCE table for %s", |
| sphb->dtbusname); |
| return ; |
| } |
| |
| /* Register default 32bit DMA window */ |
| memory_region_add_subregion(&sphb->iommu_root, 0, |
| spapr_tce_get_iommu(tcet)); |
| } |
| |
| static int spapr_phb_children_reset(Object *child, void *opaque) |
| { |
| DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE); |
| |
| if (dev) { |
| device_reset(dev); |
| } |
| |
| return 0; |
| } |
| |
| static void spapr_phb_reset(DeviceState *qdev) |
| { |
| /* Reset the IOMMU state */ |
| object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL); |
| } |
| |
| static Property spapr_phb_properties[] = { |
| DEFINE_PROP_INT32("index", sPAPRPHBState, index, -1), |
| DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1), |
| DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1), |
| DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1), |
| DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size, |
| SPAPR_PCI_MMIO_WIN_SIZE), |
| DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1), |
| DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size, |
| SPAPR_PCI_IO_WIN_SIZE), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static const VMStateDescription vmstate_spapr_pci_lsi = { |
| .name = "spapr_pci/lsi", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi), |
| |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static const VMStateDescription vmstate_spapr_pci_msi = { |
| .name = "spapr_pci/msi", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField []) { |
| VMSTATE_UINT32(key, spapr_pci_msi_mig), |
| VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig), |
| VMSTATE_UINT32(value.num, spapr_pci_msi_mig), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static void spapr_pci_fill_msi_devs(gpointer key, gpointer value, |
| gpointer opaque) |
| { |
| sPAPRPHBState *sphb = opaque; |
| |
| sphb->msi_devs[sphb->msi_devs_num].key = *(uint32_t *)key; |
| sphb->msi_devs[sphb->msi_devs_num].value = *(spapr_pci_msi *)value; |
| sphb->msi_devs_num++; |
| } |
| |
| static void spapr_pci_pre_save(void *opaque) |
| { |
| sPAPRPHBState *sphb = opaque; |
| int msi_devs_num; |
| |
| if (sphb->msi_devs) { |
| g_free(sphb->msi_devs); |
| sphb->msi_devs = NULL; |
| } |
| sphb->msi_devs_num = 0; |
| msi_devs_num = g_hash_table_size(sphb->msi); |
| if (!msi_devs_num) { |
| return; |
| } |
| sphb->msi_devs = g_malloc(msi_devs_num * sizeof(spapr_pci_msi_mig)); |
| |
| g_hash_table_foreach(sphb->msi, spapr_pci_fill_msi_devs, sphb); |
| assert(sphb->msi_devs_num == msi_devs_num); |
| } |
| |
| static int spapr_pci_post_load(void *opaque, int version_id) |
| { |
| sPAPRPHBState *sphb = opaque; |
| gpointer key, value; |
| int i; |
| |
| for (i = 0; i < sphb->msi_devs_num; ++i) { |
| key = g_memdup(&sphb->msi_devs[i].key, |
| sizeof(sphb->msi_devs[i].key)); |
| value = g_memdup(&sphb->msi_devs[i].value, |
| sizeof(sphb->msi_devs[i].value)); |
| g_hash_table_insert(sphb->msi, key, value); |
| } |
| if (sphb->msi_devs) { |
| g_free(sphb->msi_devs); |
| sphb->msi_devs = NULL; |
| } |
| sphb->msi_devs_num = 0; |
| |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_spapr_pci = { |
| .name = "spapr_pci", |
| .version_id = 2, |
| .minimum_version_id = 2, |
| .pre_save = spapr_pci_pre_save, |
| .post_load = spapr_pci_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState), |
| VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState), |
| VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState), |
| VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState), |
| VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState), |
| VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState), |
| VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0, |
| vmstate_spapr_pci_lsi, struct spapr_pci_lsi), |
| VMSTATE_INT32(msi_devs_num, sPAPRPHBState), |
| VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0, |
| vmstate_spapr_pci_msi, spapr_pci_msi_mig), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge, |
| PCIBus *rootbus) |
| { |
| sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge); |
| |
| return sphb->dtbusname; |
| } |
| |
| static void spapr_phb_class_init(ObjectClass *klass, void *data) |
| { |
| PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| sPAPRPHBClass *spc = SPAPR_PCI_HOST_BRIDGE_CLASS(klass); |
| |
| hc->root_bus_path = spapr_phb_root_bus_path; |
| dc->realize = spapr_phb_realize; |
| dc->props = spapr_phb_properties; |
| dc->reset = spapr_phb_reset; |
| dc->vmsd = &vmstate_spapr_pci; |
| set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); |
| dc->cannot_instantiate_with_device_add_yet = false; |
| spc->finish_realize = spapr_phb_finish_realize; |
| } |
| |
| static const TypeInfo spapr_phb_info = { |
| .name = TYPE_SPAPR_PCI_HOST_BRIDGE, |
| .parent = TYPE_PCI_HOST_BRIDGE, |
| .instance_size = sizeof(sPAPRPHBState), |
| .class_init = spapr_phb_class_init, |
| .class_size = sizeof(sPAPRPHBClass), |
| }; |
| |
| PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index) |
| { |
| DeviceState *dev; |
| |
| dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); |
| qdev_prop_set_uint32(dev, "index", index); |
| qdev_init_nofail(dev); |
| |
| return PCI_HOST_BRIDGE(dev); |
| } |
| |
| /* Macros to operate with address in OF binding to PCI */ |
| #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) |
| #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ |
| #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ |
| #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ |
| #define b_ss(x) b_x((x), 24, 2) /* the space code */ |
| #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ |
| #define b_ddddd(x) b_x((x), 11, 5) /* device number */ |
| #define b_fff(x) b_x((x), 8, 3) /* function number */ |
| #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ |
| |
| typedef struct sPAPRTCEDT { |
| void *fdt; |
| int node_off; |
| } sPAPRTCEDT; |
| |
| static int spapr_phb_children_dt(Object *child, void *opaque) |
| { |
| sPAPRTCEDT *p = opaque; |
| sPAPRTCETable *tcet; |
| |
| tcet = (sPAPRTCETable *) object_dynamic_cast(child, TYPE_SPAPR_TCE_TABLE); |
| if (!tcet) { |
| return 0; |
| } |
| |
| spapr_dma_dt(p->fdt, p->node_off, "ibm,dma-window", |
| tcet->liobn, tcet->bus_offset, |
| tcet->nb_table << tcet->page_shift); |
| /* Stop after the first window */ |
| |
| return 1; |
| } |
| |
| int spapr_populate_pci_dt(sPAPRPHBState *phb, |
| uint32_t xics_phandle, |
| void *fdt) |
| { |
| int bus_off, i, j; |
| char nodename[256]; |
| uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; |
| struct { |
| uint32_t hi; |
| uint64_t child; |
| uint64_t parent; |
| uint64_t size; |
| } QEMU_PACKED ranges[] = { |
| { |
| cpu_to_be32(b_ss(1)), cpu_to_be64(0), |
| cpu_to_be64(phb->io_win_addr), |
| cpu_to_be64(memory_region_size(&phb->iospace)), |
| }, |
| { |
| cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), |
| cpu_to_be64(phb->mem_win_addr), |
| cpu_to_be64(memory_region_size(&phb->memwindow)), |
| }, |
| }; |
| uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; |
| uint32_t interrupt_map_mask[] = { |
| cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)}; |
| uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7]; |
| |
| /* Start populating the FDT */ |
| sprintf(nodename, "pci@%" PRIx64, phb->buid); |
| bus_off = fdt_add_subnode(fdt, 0, nodename); |
| if (bus_off < 0) { |
| return bus_off; |
| } |
| |
| #define _FDT(exp) \ |
| do { \ |
| int ret = (exp); \ |
| if (ret < 0) { \ |
| return ret; \ |
| } \ |
| } while (0) |
| |
| /* Write PHB properties */ |
| _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); |
| _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); |
| _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3)); |
| _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2)); |
| _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); |
| _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); |
| _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); |
| _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges))); |
| _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); |
| _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); |
| _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS)); |
| |
| /* Build the interrupt-map, this must matches what is done |
| * in pci_spapr_map_irq |
| */ |
| _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", |
| &interrupt_map_mask, sizeof(interrupt_map_mask))); |
| for (i = 0; i < PCI_SLOT_MAX; i++) { |
| for (j = 0; j < PCI_NUM_PINS; j++) { |
| uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j]; |
| int lsi_num = pci_spapr_swizzle(i, j); |
| |
| irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); |
| irqmap[1] = 0; |
| irqmap[2] = 0; |
| irqmap[3] = cpu_to_be32(j+1); |
| irqmap[4] = cpu_to_be32(xics_phandle); |
| irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq); |
| irqmap[6] = cpu_to_be32(0x8); |
| } |
| } |
| /* Write interrupt map */ |
| _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, |
| sizeof(interrupt_map))); |
| |
| object_child_foreach(OBJECT(phb), spapr_phb_children_dt, |
| &((sPAPRTCEDT){ .fdt = fdt, .node_off = bus_off })); |
| |
| return 0; |
| } |
| |
| void spapr_pci_rtas_init(void) |
| { |
| spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config", |
| rtas_read_pci_config); |
| spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config", |
| rtas_write_pci_config); |
| spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config", |
| rtas_ibm_read_pci_config); |
| spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config", |
| rtas_ibm_write_pci_config); |
| if (msi_supported) { |
| spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER, |
| "ibm,query-interrupt-source-number", |
| rtas_ibm_query_interrupt_source_number); |
| spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi", |
| rtas_ibm_change_msi); |
| } |
| } |
| |
| static void spapr_pci_register_types(void) |
| { |
| type_register_static(&spapr_phb_info); |
| } |
| |
| type_init(spapr_pci_register_types) |