blob: 98499495085871216862ea6d6f59582c54817734 [file] [log] [blame]
/*
* ARM page table walking.
*
* This code is licensed under the GNU GPL v2 or later.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/range.h"
#include "qemu/main-loop.h"
#include "exec/exec-all.h"
#include "exec/page-protection.h"
#include "cpu.h"
#include "internals.h"
#include "cpu-features.h"
#include "idau.h"
#ifdef CONFIG_TCG
# include "tcg/oversized-guest.h"
#endif
typedef struct S1Translate {
/*
* in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk.
* Together with in_space, specifies the architectural translation regime.
*/
ARMMMUIdx in_mmu_idx;
/*
* in_ptw_idx: specifies which mmuidx to use for the actual
* page table descriptor load operations. This will be one of the
* ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes.
* If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
* this field is updated accordingly.
*/
ARMMMUIdx in_ptw_idx;
/*
* in_space: the security space for this walk. This plus
* the in_mmu_idx specify the architectural translation regime.
* If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
* this field is updated accordingly.
*
* Note that the security space for the in_ptw_idx may be different
* from that for the in_mmu_idx. We do not need to explicitly track
* the in_ptw_idx security space because:
* - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx
* itself specifies the security space
* - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security
* space used for ptw reads is the same as that of the security
* space of the stage 1 translation for all cases except where
* stage 1 is Secure; in that case the only possibilities for
* the ptw read are Secure and NonSecure, and the in_ptw_idx
* value being Stage2 vs Stage2_S distinguishes those.
*/
ARMSecuritySpace in_space;
/*
* in_debug: is this a QEMU debug access (gdbstub, etc)? Debug
* accesses will not update the guest page table access flags
* and will not change the state of the softmmu TLBs.
*/
bool in_debug;
/*
* If this is stage 2 of a stage 1+2 page table walk, then this must
* be true if stage 1 is an EL0 access; otherwise this is ignored.
* Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
*/
bool in_s1_is_el0;
bool out_rw;
bool out_be;
ARMSecuritySpace out_space;
hwaddr out_virt;
hwaddr out_phys;
void *out_host;
} S1Translate;
static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
vaddr address,
MMUAccessType access_type, MemOp memop,
GetPhysAddrResult *result,
ARMMMUFaultInfo *fi);
static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
vaddr address,
MMUAccessType access_type, MemOp memop,
GetPhysAddrResult *result,
ARMMMUFaultInfo *fi);
/* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
static const uint8_t pamax_map[] = {
[0] = 32,
[1] = 36,
[2] = 40,
[3] = 42,
[4] = 44,
[5] = 48,
[6] = 52,
};
uint8_t round_down_to_parange_index(uint8_t bit_size)
{
for (int i = ARRAY_SIZE(pamax_map) - 1; i >= 0; i--) {
if (pamax_map[i] <= bit_size) {
return i;
}
}
g_assert_not_reached();
}
uint8_t round_down_to_parange_bit_size(uint8_t bit_size)
{
return pamax_map[round_down_to_parange_index(bit_size)];
}
/*
* The cpu-specific constant value of PAMax; also used by hw/arm/virt.
* Note that machvirt_init calls this on a CPU that is inited but not realized!
*/
unsigned int arm_pamax(ARMCPU *cpu)
{
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
unsigned int parange =
FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
/*
* id_aa64mmfr0 is a read-only register so values outside of the
* supported mappings can be considered an implementation error.
*/
assert(parange < ARRAY_SIZE(pamax_map));
return pamax_map[parange];
}
if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
/* v7 or v8 with LPAE */
return 40;
}
/* Anything else */
return 32;
}
/*
* Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
*/
ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
{
switch (mmu_idx) {
case ARMMMUIdx_E10_0:
return ARMMMUIdx_Stage1_E0;
case ARMMMUIdx_E10_1:
return ARMMMUIdx_Stage1_E1;
case ARMMMUIdx_E10_1_PAN:
return ARMMMUIdx_Stage1_E1_PAN;
default:
return mmu_idx;
}
}
ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
{
return stage_1_mmu_idx(arm_mmu_idx(env));
}
/*
* Return where we should do ptw loads from for a stage 2 walk.
* This depends on whether the address we are looking up is a
* Secure IPA or a NonSecure IPA, which we know from whether this is
* Stage2 or Stage2_S.
* If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
*/
static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
{
bool s2walk_secure;
/*
* We're OK to check the current state of the CPU here because
* (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit
* changes.
* (2) there's no way to do a lookup that cares about Stage 2 for a
* different security state to the current one for AArch64, and AArch32
* never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
* an NS stage 1+2 lookup while the NS bit is 0.)
*/
if (!arm_el_is_aa64(env, 3)) {
return ARMMMUIdx_Phys_NS;
}
switch (arm_security_space_below_el3(env)) {
case ARMSS_NonSecure:
return ARMMMUIdx_Phys_NS;
case ARMSS_Realm:
return ARMMMUIdx_Phys_Realm;
case ARMSS_Secure:
if (stage2idx == ARMMMUIdx_Stage2_S) {
s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
} else {
s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
}
return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
default:
g_assert_not_reached();
}
}
static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
{
return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
}
/* Return the TTBR associated with this translation regime */
static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
{
if (mmu_idx == ARMMMUIdx_Stage2) {
return env->cp15.vttbr_el2;
}
if (mmu_idx == ARMMMUIdx_Stage2_S) {
return env->cp15.vsttbr_el2;
}
if (ttbrn == 0) {
return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
} else {
return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
}
}
/* Return true if the specified stage of address translation is disabled */
static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
ARMSecuritySpace space)
{
uint64_t hcr_el2;
if (arm_feature(env, ARM_FEATURE_M)) {
bool is_secure = arm_space_is_secure(space);
switch (env->v7m.mpu_ctrl[is_secure] &
(R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
case R_V7M_MPU_CTRL_ENABLE_MASK:
/* Enabled, but not for HardFault and NMI */
return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
/* Enabled for all cases */
return false;
case 0:
default:
/*
* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
* we warned about that in armv7m_nvic.c when the guest set it.
*/
return true;
}
}
switch (mmu_idx) {
case ARMMMUIdx_Stage2:
case ARMMMUIdx_Stage2_S:
/* HCR.DC means HCR.VM behaves as 1 */
hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
case ARMMMUIdx_E10_0:
case ARMMMUIdx_E10_1:
case ARMMMUIdx_E10_1_PAN:
/* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
if (hcr_el2 & HCR_TGE) {
return true;
}
break;
case ARMMMUIdx_Stage1_E0:
case ARMMMUIdx_Stage1_E1:
case ARMMMUIdx_Stage1_E1_PAN:
/* HCR.DC means SCTLR_EL1.M behaves as 0 */
hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
if (hcr_el2 & HCR_DC) {
return true;
}
break;
case ARMMMUIdx_E20_0:
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
case ARMMMUIdx_E2:
case ARMMMUIdx_E3:
case ARMMMUIdx_E30_0:
case ARMMMUIdx_E30_3_PAN:
break;
case ARMMMUIdx_Phys_S:
case ARMMMUIdx_Phys_NS:
case ARMMMUIdx_Phys_Root:
case ARMMMUIdx_Phys_Realm:
/* No translation for physical address spaces. */
return true;
default:
g_assert_not_reached();
}
return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
}
static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
ARMSecuritySpace pspace,
ARMMMUFaultInfo *fi)
{
MemTxAttrs attrs = {
.secure = true,
.space = ARMSS_Root,
};
ARMCPU *cpu = env_archcpu(env);
uint64_t gpccr = env->cp15.gpccr_el3;
unsigned pps, pgs, l0gptsz, level = 0;
uint64_t tableaddr, pps_mask, align, entry, index;
AddressSpace *as;
MemTxResult result;
int gpi;
if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
return true;
}
/*
* GPC Priority 1 (R_GMGRR):
* R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
* the access fails as GPT walk fault at level 0.
*/
/*
* Configuration of PPS to a value exceeding the implemented
* physical address size is invalid.
*/
pps = FIELD_EX64(gpccr, GPCCR, PPS);
if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
goto fault_walk;
}
pps = pamax_map[pps];
pps_mask = MAKE_64BIT_MASK(0, pps);
switch (FIELD_EX64(gpccr, GPCCR, SH)) {
case 0b10: /* outer shareable */
break;
case 0b00: /* non-shareable */
case 0b11: /* inner shareable */
/* Inner and Outer non-cacheable requires Outer shareable. */
if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
goto fault_walk;
}
break;
default: /* reserved */
goto fault_walk;
}
switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
case 0b00: /* 4KB */
pgs = 12;
break;
case 0b01: /* 64KB */
pgs = 16;
break;
case 0b10: /* 16KB */
pgs = 14;
break;
default: /* reserved */
goto fault_walk;
}
/* Note this field is read-only and fixed at reset. */
l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
/*
* GPC Priority 2: Secure, Realm or Root address exceeds PPS.
* R_CPDSB: A NonSecure physical address input exceeding PPS
* does not experience any fault.
*/
if (paddress & ~pps_mask) {
if (pspace == ARMSS_NonSecure) {
return true;
}
goto fault_size;
}
/* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
tableaddr = env->cp15.gptbr_el3 << 12;
if (tableaddr & ~pps_mask) {
goto fault_size;
}
/*
* BADDR is aligned per a function of PPS and L0GPTSZ.
* These bits of GPTBR_EL3 are RES0, but are not a configuration error,
* unlike the RES0 bits of the GPT entries (R_XNKFZ).
*/
align = MAX(pps - l0gptsz + 3, 12);
align = MAKE_64BIT_MASK(0, align);
tableaddr &= ~align;
as = arm_addressspace(env_cpu(env), attrs);
/* Level 0 lookup. */
index = extract64(paddress, l0gptsz, pps - l0gptsz);
tableaddr += index * 8;
entry = address_space_ldq_le(as, tableaddr, attrs, &result);
if (result != MEMTX_OK) {
goto fault_eabt;
}
switch (extract32(entry, 0, 4)) {
case 1: /* block descriptor */
if (entry >> 8) {
goto fault_walk; /* RES0 bits not 0 */
}
gpi = extract32(entry, 4, 4);
goto found;
case 3: /* table descriptor */
tableaddr = entry & ~0xf;
align = MAX(l0gptsz - pgs - 1, 12);
align = MAKE_64BIT_MASK(0, align);
if (tableaddr & (~pps_mask | align)) {
goto fault_walk; /* RES0 bits not 0 */
}
break;
default: /* invalid */
goto fault_walk;
}
/* Level 1 lookup */
level = 1;
index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
tableaddr += index * 8;
entry = address_space_ldq_le(as, tableaddr, attrs, &result);
if (result != MEMTX_OK) {
goto fault_eabt;
}
switch (extract32(entry, 0, 4)) {
case 1: /* contiguous descriptor */
if (entry >> 10) {
goto fault_walk; /* RES0 bits not 0 */
}
/*
* Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
* and because we cannot invalidate by pa, and thus will always
* flush entire tlbs, we don't actually care about the range here
* and can simply extract the GPI as the result.
*/
if (extract32(entry, 8, 2) == 0) {
goto fault_walk; /* reserved contig */
}
gpi = extract32(entry, 4, 4);
break;
default:
index = extract64(paddress, pgs, 4);
gpi = extract64(entry, index * 4, 4);
break;
}
found:
switch (gpi) {
case 0b0000: /* no access */
break;
case 0b1111: /* all access */
return true;
case 0b1000:
case 0b1001:
case 0b1010:
case 0b1011:
if (pspace == (gpi & 3)) {
return true;
}
break;
default:
goto fault_walk; /* reserved */
}
fi->gpcf = GPCF_Fail;
goto fault_common;
fault_eabt:
fi->gpcf = GPCF_EABT;
goto fault_common;
fault_size:
fi->gpcf = GPCF_AddressSize;
goto fault_common;
fault_walk:
fi->gpcf = GPCF_Walk;
fault_common:
fi->level = level;
fi->paddr = paddress;
fi->paddr_space = pspace;
return false;
}
static bool S1_attrs_are_device(uint8_t attrs)
{
/*
* This slightly under-decodes the MAIR_ELx field:
* 0b0000dd01 is Device with FEAT_XS, otherwise UNPREDICTABLE;
* 0b0000dd1x is UNPREDICTABLE.
*/
return (attrs & 0xf0) == 0;
}
static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
{
/*
* For an S1 page table walk, the stage 1 attributes are always
* some form of "this is Normal memory". The combined S1+S2
* attributes are therefore only Device if stage 2 specifies Device.
* With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
* ie when cacheattrs.attrs bits [3:2] are 0b00.
* With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
* when cacheattrs.attrs bit [2] is 0.
*/
if (hcr & HCR_FWB) {
return (attrs & 0x4) == 0;
} else {
return (attrs & 0xc) == 0;
}
}
static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space,
ARMMMUIdx s2_mmu_idx)
{
/*
* Return the security space to use for stage 2 when doing
* the S1 page table descriptor load.
*/
if (regime_is_stage2(s2_mmu_idx)) {
/*
* The security space for ptw reads is almost always the same
* as that of the security space of the stage 1 translation.
* The only exception is when stage 1 is Secure; in that case
* the ptw read might be to the Secure or the NonSecure space
* (but never Realm or Root), and the s2_mmu_idx tells us which.
* Root translations are always single-stage.
*/
if (s1_space == ARMSS_Secure) {
return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S);
} else {
assert(s2_mmu_idx != ARMMMUIdx_Stage2_S);
assert(s1_space != ARMSS_Root);
return s1_space;
}
} else {
/* ptw loads are from phys: the mmu idx itself says which space */
return arm_phys_to_space(s2_mmu_idx);
}
}
static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx)
{
/*
* For stage 2 faults in Secure EL22, S1NS indicates
* whether the faulting IPA is in the Secure or NonSecure
* IPA space. For all other kinds of fault, it is false.
*/
return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx)
&& s2_mmu_idx == ARMMMUIdx_Stage2_S;
}
/* Translate a S1 pagetable walk through S2 if needed. */
static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
hwaddr addr, ARMMMUFaultInfo *fi)
{
ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
uint8_t pte_attrs;
ptw->out_virt = addr;
if (unlikely(ptw->in_debug)) {
/*
* From gdbstub, do not use softmmu so that we don't modify the
* state of the cpu at all, including softmmu tlb contents.
*/
ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx);
S1Translate s2ptw = {
.in_mmu_idx = s2_mmu_idx,
.in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
.in_space = s2_space,
.in_debug = true,
};
GetPhysAddrResult s2 = { };
if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, 0, &s2, fi)) {
goto fail;
}
ptw->out_phys = s2.f.phys_addr;
pte_attrs = s2.cacheattrs.attrs;
ptw->out_host = NULL;
ptw->out_rw = false;
ptw->out_space = s2.f.attrs.space;
} else {
#ifdef CONFIG_TCG
CPUTLBEntryFull *full;
int flags;
env->tlb_fi = fi;
flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
arm_to_core_mmu_idx(s2_mmu_idx),
&ptw->out_host, &full);
env->tlb_fi = NULL;
if (unlikely(flags & TLB_INVALID_MASK)) {
goto fail;
}
ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
ptw->out_rw = full->prot & PAGE_WRITE;
pte_attrs = full->extra.arm.pte_attrs;
ptw->out_space = full->attrs.space;
#else
g_assert_not_reached();
#endif
}
if (regime_is_stage2(s2_mmu_idx)) {
uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
/*
* PTW set and S1 walk touched S2 Device memory:
* generate Permission fault.
*/
fi->type = ARMFault_Permission;
fi->s2addr = addr;
fi->stage2 = true;
fi->s1ptw = true;
fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
return false;
}
}
ptw->out_be = regime_translation_big_endian(env, mmu_idx);
return true;
fail:
assert(fi->type != ARMFault_None);
if (fi->type == ARMFault_GPCFOnOutput) {
fi->type = ARMFault_GPCFOnWalk;
}
fi->s2addr = addr;
fi->stage2 = regime_is_stage2(s2_mmu_idx);
fi->s1ptw = fi->stage2;
fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
return false;
}
/* All loads done in the course of a page table walk go through here. */
static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
ARMMMUFaultInfo *fi)
{
CPUState *cs = env_cpu(env);
void *host = ptw->out_host;
uint32_t data;
if (likely(host)) {
/* Page tables are in RAM, and we have the host address. */
data = qatomic_read((uint32_t *)host);
if (ptw->out_be) {
data = be32_to_cpu(data);
} else {
data = le32_to_cpu(data);
}
} else {
/* Page tables are in MMIO. */
MemTxAttrs attrs = {
.space = ptw->out_space,
.secure = arm_space_is_secure(ptw->out_space),
};
AddressSpace *as = arm_addressspace(cs, attrs);
MemTxResult result = MEMTX_OK;
if (ptw->out_be) {
data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
} else {
data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
}
if (unlikely(result != MEMTX_OK)) {
fi->type = ARMFault_SyncExternalOnWalk;
fi->ea = arm_extabort_type(result);
return 0;
}
}
return data;
}
static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
ARMMMUFaultInfo *fi)
{
CPUState *cs = env_cpu(env);
void *host = ptw->out_host;
uint64_t data;
if (likely(host)) {
/* Page tables are in RAM, and we have the host address. */
#ifdef CONFIG_ATOMIC64
data = qatomic_read__nocheck((uint64_t *)host);
if (ptw->out_be) {
data = be64_to_cpu(data);
} else {
data = le64_to_cpu(data);
}
#else
if (ptw->out_be) {
data = ldq_be_p(host);
} else {
data = ldq_le_p(host);
}
#endif
} else {
/* Page tables are in MMIO. */
MemTxAttrs attrs = {
.space = ptw->out_space,
.secure = arm_space_is_secure(ptw->out_space),
};
AddressSpace *as = arm_addressspace(cs, attrs);
MemTxResult result = MEMTX_OK;
if (ptw->out_be) {
data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
} else {
data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
}
if (unlikely(result != MEMTX_OK)) {
fi->type = ARMFault_SyncExternalOnWalk;
fi->ea = arm_extabort_type(result);
return 0;
}
}
return data;
}
static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
uint64_t new_val, S1Translate *ptw,
ARMMMUFaultInfo *fi)
{
#if defined(TARGET_AARCH64) && defined(CONFIG_TCG)
uint64_t cur_val;
void *host = ptw->out_host;
if (unlikely(!host)) {
/* Page table in MMIO Memory Region */
CPUState *cs = env_cpu(env);
MemTxAttrs attrs = {
.space = ptw->out_space,
.secure = arm_space_is_secure(ptw->out_space),
};
AddressSpace *as = arm_addressspace(cs, attrs);
MemTxResult result = MEMTX_OK;
bool need_lock = !bql_locked();
if (need_lock) {
bql_lock();
}
if (ptw->out_be) {
cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
if (unlikely(result != MEMTX_OK)) {
fi->type = ARMFault_SyncExternalOnWalk;
fi->ea = arm_extabort_type(result);
if (need_lock) {
bql_unlock();
}
return old_val;
}
if (cur_val == old_val) {
address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result);
if (unlikely(result != MEMTX_OK)) {
fi->type = ARMFault_SyncExternalOnWalk;
fi->ea = arm_extabort_type(result);
if (need_lock) {
bql_unlock();
}
return old_val;
}
cur_val = new_val;
}
} else {
cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
if (unlikely(result != MEMTX_OK)) {
fi->type = ARMFault_SyncExternalOnWalk;
fi->ea = arm_extabort_type(result);
if (need_lock) {
bql_unlock();
}
return old_val;
}
if (cur_val == old_val) {
address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result);
if (unlikely(result != MEMTX_OK)) {
fi->type = ARMFault_SyncExternalOnWalk;
fi->ea = arm_extabort_type(result);
if (need_lock) {
bql_unlock();
}
return old_val;
}
cur_val = new_val;
}
}
if (need_lock) {
bql_unlock();
}
return cur_val;
}
/*
* Raising a stage2 Protection fault for an atomic update to a read-only
* page is delayed until it is certain that there is a change to make.
*/
if (unlikely(!ptw->out_rw)) {
int flags;
env->tlb_fi = fi;
flags = probe_access_full_mmu(env, ptw->out_virt, 0,
MMU_DATA_STORE,
arm_to_core_mmu_idx(ptw->in_ptw_idx),
NULL, NULL);
env->tlb_fi = NULL;
if (unlikely(flags & TLB_INVALID_MASK)) {
/*
* We know this must be a stage 2 fault because the granule
* protection table does not separately track read and write
* permission, so all GPC faults are caught in S1_ptw_translate():
* we only get here for "readable but not writeable".
*/
assert(fi->type != ARMFault_None);
fi->s2addr = ptw->out_virt;
fi->stage2 = true;
fi->s1ptw = true;
fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx);
return 0;
}
/* In case CAS mismatches and we loop, remember writability. */
ptw->out_rw = true;
}
#ifdef CONFIG_ATOMIC64
if (ptw->out_be) {
old_val = cpu_to_be64(old_val);
new_val = cpu_to_be64(new_val);
cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
cur_val = be64_to_cpu(cur_val);
} else {
old_val = cpu_to_le64(old_val);
new_val = cpu_to_le64(new_val);
cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
cur_val = le64_to_cpu(cur_val);
}
#else
/*
* We can't support the full 64-bit atomic cmpxchg on the host.
* Because this is only used for FEAT_HAFDBS, which is only for AA64,
* we know that TCG_OVERSIZED_GUEST is set, which means that we are
* running in round-robin mode and could only race with dma i/o.
*/
#if !TCG_OVERSIZED_GUEST
# error "Unexpected configuration"
#endif
bool locked = bql_locked();
if (!locked) {
bql_lock();
}
if (ptw->out_be) {
cur_val = ldq_be_p(host);
if (cur_val == old_val) {
stq_be_p(host, new_val);
}
} else {
cur_val = ldq_le_p(host);
if (cur_val == old_val) {
stq_le_p(host, new_val);
}
}
if (!locked) {
bql_unlock();
}
#endif
return cur_val;
#else
/* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
g_assert_not_reached();
#endif
}
static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
uint32_t *table, uint32_t address)
{
/* Note that we can only get here for an AArch32 PL0/PL1 lookup */
uint64_t tcr = regime_tcr(env, mmu_idx);
int maskshift = extract32(tcr, 0, 3);
uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
uint32_t base_mask;
if (address & mask) {
if (tcr & TTBCR_PD1) {
/* Translation table walk disabled for TTBR1 */
return false;
}
*table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
} else {
if (tcr & TTBCR_PD0) {
/* Translation table walk disabled for TTBR0 */
return false;
}
base_mask = ~((uint32_t)0x3fffu >> maskshift);
*table = regime_ttbr(env, mmu_idx, 0) & base_mask;
}
*table |= (address >> 18) & 0x3ffc;
return true;
}
/*
* Translate section/page access permissions to page R/W protection flags
* @env: CPUARMState
* @mmu_idx: MMU index indicating required translation regime
* @ap: The 3-bit access permissions (AP[2:0])
* @domain_prot: The 2-bit domain access permissions
* @is_user: TRUE if accessing from PL0
*/
static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
int ap, int domain_prot, bool is_user)
{
if (domain_prot == 3) {
return PAGE_READ | PAGE_WRITE;
}
switch (ap) {
case 0:
if (arm_feature(env, ARM_FEATURE_V7)) {
return 0;
}
switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
case SCTLR_S:
return is_user ? 0 : PAGE_READ;
case SCTLR_R:
return PAGE_READ;
default:
return 0;
}
case 1:
return is_user ? 0 : PAGE_READ | PAGE_WRITE;
case 2:
if (is_user) {
return PAGE_READ;
} else {
return PAGE_READ | PAGE_WRITE;
}
case 3:
return PAGE_READ | PAGE_WRITE;
case 4: /* Reserved. */
return 0;
case 5:
return is_user ? 0 : PAGE_READ;
case 6:
return PAGE_READ;
case 7:
if (!arm_feature(env, ARM_FEATURE_V6K)) {
return 0;
}
return PAGE_READ;
default:
g_assert_not_reached();
}
}
/*
* Translate section/page access permissions to page R/W protection flags
* @env: CPUARMState
* @mmu_idx: MMU index indicating required translation regime
* @ap: The 3-bit access permissions (AP[2:0])
* @domain_prot: The 2-bit domain access permissions
*/
static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
int ap, int domain_prot)
{
return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
regime_is_user(env, mmu_idx));
}
/*
* Translate section/page access permissions to page R/W protection flags.
* @ap: The 2-bit simple AP (AP[2:1])
* @is_user: TRUE if accessing from PL0
*/
static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
{
switch (ap) {
case 0:
return is_user ? 0 : PAGE_READ | PAGE_WRITE;
case 1:
return PAGE_READ | PAGE_WRITE;
case 2:
return is_user ? 0 : PAGE_READ;
case 3:
return PAGE_READ;
default:
g_assert_not_reached();
}
}
static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
{
return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
}
static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
uint32_t address, MMUAccessType access_type,
GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
{
int level = 1;
uint32_t table;
uint32_t desc;
int type;
int ap;
int domain = 0;
int domain_prot;
hwaddr phys_addr;
uint32_t dacr;
/* Pagetable walk. */
/* Lookup l1 descriptor. */
if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
/* Section translation fault if page walk is disabled by PD0 or PD1 */
fi->type = ARMFault_Translation;
goto do_fault;
}
if (!S1_ptw_translate(env, ptw, table, fi)) {
goto do_fault;
}
desc = arm_ldl_ptw(env, ptw, fi);
if (fi->type != ARMFault_None) {
goto do_fault;
}
type = (desc & 3);
domain = (desc >> 5) & 0x0f;
if (regime_el(env, ptw->in_mmu_idx) == 1) {
dacr = env->cp15.dacr_ns;
} else {
dacr = env->cp15.dacr_s;
}
domain_prot = (dacr >> (domain * 2)) & 3;
if (type == 0) {
/* Section translation fault. */
fi->type = ARMFault_Translation;
goto do_fault;
}
if (type != 2) {
level = 2;
}
if (domain_prot == 0 || domain_prot == 2) {
fi->type = ARMFault_Domain;
goto do_fault;
}
if (type == 2) {
/* 1Mb section. */
phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
ap = (desc >> 10) & 3;
result->f.lg_page_size = 20; /* 1MB */
} else {
/* Lookup l2 entry. */
if (type == 1) {
/* Coarse pagetable. */
table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
} else {
/* Fine pagetable. */
table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
}
if (!S1_ptw_translate(env, ptw, table, fi)) {
goto do_fault;
}
desc = arm_ldl_ptw(env, ptw, fi);
if (fi->type != ARMFault_None) {
goto do_fault;
}
switch (desc & 3) {
case 0: /* Page translation fault. */
fi->type = ARMFault_Translation;
goto do_fault;
case 1: /* 64k page. */
phys_addr = (desc & 0xffff0000) | (address & 0xffff);
ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
result->f.lg_page_size = 16;
break;
case 2: /* 4k page. */
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
result->f.lg_page_size = 12;
break;
case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
if (type == 1) {
/* ARMv6/XScale extended small page format */
if (arm_feature(env, ARM_FEATURE_XSCALE)
|| arm_feature(env, ARM_FEATURE_V6)) {
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
result->f.lg_page_size = 12;
} else {
/*
* UNPREDICTABLE in ARMv5; we choose to take a
* page translation fault.
*/
fi->type = ARMFault_Translation;
goto do_fault;
}
} else {
phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
result->f.lg_page_size = 10;
}
ap = (desc >> 4) & 3;
break;
default:
/* Never happens, but compiler isn't smart enough to tell. */
g_assert_not_reached();
}
}
result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
if (!(result->f.prot & (1 << access_type))) {
/* Access permission fault. */
fi->type = ARMFault_Permission;
goto do_fault;
}
result->f.phys_addr = phys_addr;
return false;
do_fault:
fi->domain = domain;
fi->level = level;
return true;
}
static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
uint32_t address, MMUAccessType access_type,
GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
{
ARMCPU *cpu = env_archcpu(env);
ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
int level = 1;
uint32_t table;
uint32_t desc;
uint32_t xn;
uint32_t pxn = 0;
int type;
int ap;
int domain = 0;
int domain_prot;
hwaddr phys_addr;
uint32_t dacr;
bool ns;
int user_prot;
/* Pagetable walk. */
/* Lookup l1 descriptor. */
if (!get_level1_table_address(env, mmu_idx, &table, address)) {
/* Section translation fault if page walk is disabled by PD0 or PD1 */
fi->type = ARMFault_Translation;
goto do_fault;
}
if (!S1_ptw_translate(env, ptw, table, fi)) {
goto do_fault;
}
desc = arm_ldl_ptw(env, ptw, fi);
if (fi->type != ARMFault_None) {
goto do_fault;
}
type = (desc & 3);
if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
/* Section translation fault, or attempt to use the encoding
* which is Reserved on implementations without PXN.
*/
fi->type = ARMFault_Translation;
goto do_fault;
}
if ((type == 1) || !(desc & (1 << 18))) {
/* Page or Section. */
domain = (desc >> 5) & 0x0f;
}
if (regime_el(env, mmu_idx) == 1) {
dacr = env->cp15.dacr_ns;
} else {
dacr = env->cp15.dacr_s;
}
if (type == 1) {
level = 2;
}
domain_prot = (dacr >> (domain * 2)) & 3;
if (domain_prot == 0 || domain_prot == 2) {
/* Section or Page domain fault */
fi->type = ARMFault_Domain;
goto do_fault;
}
if (type != 1) {
if (desc & (1 << 18)) {
/* Supersection. */
phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
result->f.lg_page_size = 24; /* 16MB */
} else {
/* Section. */
phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
result->f.lg_page_size = 20; /* 1MB */
}
ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
xn = desc & (1 << 4);
pxn = desc & 1;
ns = extract32(desc, 19, 1);
} else {
if (cpu_isar_feature(aa32_pxn, cpu)) {
pxn = (desc >> 2) & 1;
}
ns = extract32(desc, 3, 1);
/* Lookup l2 entry. */
table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
if (!S1_ptw_translate(env, ptw, table, fi)) {
goto do_fault;
}
desc = arm_ldl_ptw(env, ptw, fi);
if (fi->type != ARMFault_None) {
goto do_fault;
}
ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
switch (desc & 3) {
case 0: /* Page translation fault. */
fi->type = ARMFault_Translation;
goto do_fault;
case 1: /* 64k page. */
phys_addr = (desc & 0xffff0000) | (address & 0xffff);
xn = desc & (1 << 15);
result->f.lg_page_size = 16;
break;
case 2: case 3: /* 4k page. */
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
xn = desc & 1;
result->f.lg_page_size = 12;
break;
default:
/* Never happens, but compiler isn't smart enough to tell. */
g_assert_not_reached();
}
}
if (domain_prot == 3) {
result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
} else {
if (pxn && !regime_is_user(env, mmu_idx)) {
xn = 1;
}
if (xn && access_type == MMU_INST_FETCH) {
fi->type = ARMFault_Permission;
goto do_fault;
}
if (arm_feature(env, ARM_FEATURE_V6K) &&
(regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
/* The simplified model uses AP[0] as an access control bit. */
if ((ap & 1) == 0) {
/* Access flag fault. */
fi->type = ARMFault_AccessFlag;
goto do_fault;
}
result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
user_prot = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
} else {
result->f.prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
user_prot = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
}
if (result->f.prot && !xn) {
result->f.prot |= PAGE_EXEC;
}
if (!(result->f.prot & (1 << access_type))) {
/* Access permission fault. */
fi->type = ARMFault_Permission;
goto do_fault;
}
if (regime_is_pan(env, mmu_idx) &&
!regime_is_user(env, mmu_idx) &&
user_prot &&
access_type != MMU_INST_FETCH) {
/* Privileged Access Never fault */
fi->type = ARMFault_Permission;
goto do_fault;
}
}
if (ns) {
/* The NS bit will (as required by the architecture) have no effect if
* the CPU doesn't support TZ or this is a non-secure translation
* regime, because the attribute will already be non-secure.
*/
result->f.attrs.secure = false;
result->f.attrs.space = ARMSS_NonSecure;
}
result->f.phys_addr = phys_addr;
return false;
do_fault:
fi->domain = domain;
fi->level = level;
return true;
}
/*
* Translate S2 section/page access permissions to protection flags
* @env: CPUARMState
* @s2ap: The 2-bit stage2 access permissions (S2AP)
* @xn: XN (execute-never) bits
* @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
*/
static int get_S2prot_noexecute(int s2ap)
{
int prot = 0;
if (s2ap & 1) {
prot |= PAGE_READ;
}
if (s2ap & 2) {
prot |= PAGE_WRITE;
}
return prot;
}
static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
{
int prot = get_S2prot_noexecute(s2ap);
if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
switch (xn) {
case 0:
prot |= PAGE_EXEC;
break;
case 1:
if (s1_is_el0) {
prot |= PAGE_EXEC;
}
break;
case 2:
break;
case 3:
if (!s1_is_el0) {
prot |= PAGE_EXEC;
}
break;
default:
g_assert_not_reached();
}
} else {
if (!extract32(xn, 1, 1)) {
if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
prot |= PAGE_EXEC;
}
}
}
return prot;
}
/*
* Translate section/page access permissions to protection flags
* @env: CPUARMState
* @mmu_idx: MMU index indicating required translation regime
* @is_aa64: TRUE if AArch64
* @ap: The 2-bit simple AP (AP[2:1])
* @xn: XN (execute-never) bit
* @pxn: PXN (privileged execute-never) bit
* @in_pa: The original input pa space
* @out_pa: The output pa space, modified by NSTable, NS, and NSE
*/
static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
int ap, int xn, int pxn,
ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
{
ARMCPU *cpu = env_archcpu(env);
bool is_user = regime_is_user(env, mmu_idx);
int prot_rw, user_rw;
bool have_wxn;
int wxn = 0;
assert(!regime_is_stage2(mmu_idx));
user_rw = simple_ap_to_rw_prot_is_user(ap, true);
if (is_user) {
prot_rw = user_rw;
} else {
/*
* PAN controls can forbid data accesses but don't affect insn fetch.
* Plain PAN forbids data accesses if EL0 has data permissions;
* PAN3 forbids data accesses if EL0 has either data or exec perms.
* Note that for AArch64 the 'user can exec' case is exactly !xn.
* We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
* do not affect EPAN.
*/
if (user_rw && regime_is_pan(env, mmu_idx)) {
prot_rw = 0;
} else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
regime_is_pan(env, mmu_idx) &&
(regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
prot_rw = 0;
} else {
prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
}
}
if (in_pa != out_pa) {
switch (in_pa) {
case ARMSS_Root:
/*
* R_ZWRVD: permission fault for insn fetched from non-Root,
* I_WWBFB: SIF has no effect in EL3.
*/
return prot_rw;
case ARMSS_Realm:
/*
* R_PKTDS: permission fault for insn fetched from non-Realm,
* for Realm EL2 or EL2&0. The corresponding fault for EL1&0
* happens during any stage2 translation.
*/
switch (mmu_idx) {
case ARMMMUIdx_E2:
case ARMMMUIdx_E20_0:
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
return prot_rw;
default:
break;
}
break;
case ARMSS_Secure:
if (env->cp15.scr_el3 & SCR_SIF) {
return prot_rw;
}
break;
default:
/* Input NonSecure must have output NonSecure. */
g_assert_not_reached();
}
}
/* TODO have_wxn should be replaced with
* ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
* when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
* compatible processors have EL2, which is required for [U]WXN.
*/
have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
if (have_wxn) {
wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
}
if (is_aa64) {
if (regime_has_2_ranges(mmu_idx) && !is_user) {
xn = pxn || (user_rw & PAGE_WRITE);
}
} else if (arm_feature(env, ARM_FEATURE_V7)) {
switch (regime_el(env, mmu_idx)) {
case 1:
case 3:
if (is_user) {
xn = xn || !(user_rw & PAGE_READ);
} else {
int uwxn = 0;
if (have_wxn) {
uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
}
xn = xn || !(prot_rw & PAGE_READ) || pxn ||
(uwxn && (user_rw & PAGE_WRITE));
}
break;
case 2:
break;
}
} else {
xn = wxn = 0;
}
if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
return prot_rw;
}
return prot_rw | PAGE_EXEC;
}
static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
ARMMMUIdx mmu_idx)
{
uint64_t tcr = regime_tcr(env, mmu_idx);
uint32_t el = regime_el(env, mmu_idx);
int select, tsz;
bool epd, hpd;
assert(mmu_idx != ARMMMUIdx_Stage2_S);
if (mmu_idx == ARMMMUIdx_Stage2) {
/* VTCR */
bool sext = extract32(tcr, 4, 1);
bool sign = extract32(tcr, 3, 1);
/*
* If the sign-extend bit is not the same as t0sz[3], the result
* is unpredictable. Flag this as a guest error.
*/
if (sign != sext) {
qemu_log_mask(LOG_GUEST_ERROR,
"AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
}
tsz = sextract32(tcr, 0, 4) + 8;
select = 0;
hpd = false;
epd = false;
} else if (el == 2) {
/* HTCR */
tsz = extract32(tcr, 0, 3);
select = 0;
hpd = extract64(tcr, 24, 1);
epd = false;
} else {
int t0sz = extract32(tcr, 0, 3);
int t1sz = extract32(tcr, 16, 3);
if (t1sz == 0) {
select = va > (0xffffffffu >> t0sz);
} else {
/* Note that we will detect errors later. */
select = va >= ~(0xffffffffu >> t1sz);
}
if (!select) {
tsz = t0sz;
epd = extract32(tcr, 7, 1);
hpd = extract64(tcr, 41, 1);
} else {
tsz = t1sz;
epd = extract32(tcr, 23, 1);
hpd = extract64(tcr, 42, 1);
}
/* For aarch32, hpd0 is not enabled without t2e as well. */
hpd &= extract32(tcr, 6, 1);
}
return (ARMVAParameters) {
.tsz = tsz,
.select = select,
.epd = epd,
.hpd = hpd,
};
}
/*
* check_s2_mmu_setup
* @cpu: ARMCPU
* @is_aa64: True if the translation regime is in AArch64 state
* @tcr: VTCR_EL2 or VSTCR_EL2
* @ds: Effective value of TCR.DS.
* @iasize: Bitsize of IPAs
* @stride: Page-table stride (See the ARM ARM)
*
* Decode the starting level of the S2 lookup, returning INT_MIN if
* the configuration is invalid.
*/
static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
bool ds, int iasize, int stride)
{
int sl0, sl2, startlevel, granulebits, levels;
int s1_min_iasize, s1_max_iasize;
sl0 = extract32(tcr, 6, 2);
if (is_aa64) {
/*
* AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
* so interleave AArch64.S2StartLevel.
*/
switch (stride) {
case 9: /* 4KB */
/* SL2 is RES0 unless DS=1 & 4KB granule. */
sl2 = extract64(tcr, 33, 1);
if (ds && sl2) {
if (sl0 != 0) {
goto fail;
}
startlevel = -1;
} else {
startlevel = 2 - sl0;
switch (sl0) {
case 2:
if (arm_pamax(cpu) < 44) {
goto fail;
}
break;
case 3:
if (!cpu_isar_feature(aa64_st, cpu)) {
goto fail;
}
startlevel = 3;
break;
}
}
break;
case 11: /* 16KB */
switch (sl0) {
case 2:
if (arm_pamax(cpu) < 42) {
goto fail;
}
break;
case 3:
if (!ds) {
goto fail;
}
break;
}
startlevel = 3 - sl0;
break;
case 13: /* 64KB */
switch (sl0) {
case 2:
if (arm_pamax(cpu) < 44) {
goto fail;
}
break;
case 3:
goto fail;
}
startlevel = 3 - sl0;
break;
default:
g_assert_not_reached();
}
} else {
/*
* Things are simpler for AArch32 EL2, with only 4k pages.
* There is no separate S2InvalidSL function, but AArch32.S2Walk
* begins with walkparms.sl0 in {'1x'}.
*/
assert(stride == 9);
if (sl0 >= 2) {
goto fail;
}
startlevel = 2 - sl0;
}
/* AArch{64,32}.S2InconsistentSL are functionally equivalent. */
levels = 3 - startlevel;
granulebits = stride + 3;
s1_min_iasize = levels * stride + granulebits + 1;
s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
return startlevel;
}
fail:
return INT_MIN;
}
static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds,
ARMGranuleSize gran, int level)
{
/*
* See pseudocode AArch46.BlockDescSupported(): block descriptors
* are not valid at all levels, depending on the page size.
*/
switch (gran) {
case Gran4K:
return (level == 0 && ds) || level == 1 || level == 2;
case Gran16K:
return (level == 1 && ds) || level == 2;
case Gran64K:
return (level == 1 && arm_pamax(cpu) == 52) || level == 2;
default:
g_assert_not_reached();
}
}
static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw)
{
uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1);
}
/**
* get_phys_addr_lpae: perform one stage of page table walk, LPAE format
*
* Returns false if the translation was successful. Otherwise, phys_ptr,
* attrs, prot and page_size may not be filled in, and the populated fsr
* value provides information on why the translation aborted, in the format
* of a long-format DFSR/IFSR fault register, with the following caveat:
* the WnR bit is never set (the caller must do this).
*
* @env: CPUARMState
* @ptw: Current and next stage parameters for the walk.
* @address: virtual address to get physical address for
* @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
* @memop: memory operation feeding this access, or 0 for none
* @result: set on translation success,
* @fi: set to fault info if the translation fails
*/
static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
uint64_t address,
MMUAccessType access_type, MemOp memop,
GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
{
ARMCPU *cpu = env_archcpu(env);
ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
int32_t level;
ARMVAParameters param;
uint64_t ttbr;
hwaddr descaddr, indexmask, indexmask_grainsize;
uint32_t tableattrs;
target_ulong page_size;
uint64_t attrs;
int32_t stride;
int addrsize, inputsize, outputsize;
uint64_t tcr = regime_tcr(env, mmu_idx);
int ap, xn, pxn;
uint32_t el = regime_el(env, mmu_idx);
uint64_t descaddrmask;
bool aarch64 = arm_el_is_aa64(env, el);
uint64_t descriptor, new_descriptor;
ARMSecuritySpace out_space;
bool device;
/* TODO: This code does not support shareability levels. */
if (aarch64) {
int ps;
param = aa64_va_parameters(env, address, mmu_idx,
access_type != MMU_INST_FETCH,
!arm_el_is_aa64(env, 1));
level = 0;
/*
* If TxSZ is programmed to a value larger than the maximum,
* or smaller than the effective minimum, it is IMPLEMENTATION
* DEFINED whether we behave as if the field were programmed
* within bounds, or if a level 0 Translation fault is generated.
*
* With FEAT_LVA, fault on less than minimum becomes required,
* so our choice is to always raise the fault.
*/
if (param.tsz_oob) {
goto do_translation_fault;
}
addrsize = 64 - 8 * param.tbi;
inputsize = 64 - param.tsz;
/*
* Bound PS by PARANGE to find the effective output address size.
* ID_AA64MMFR0 is a read-only register so values outside of the
* supported mappings can be considered an implementation error.
*/
ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
ps = MIN(ps, param.ps);
assert(ps < ARRAY_SIZE(pamax_map));
outputsize = pamax_map[ps];
/*
* With LPA2, the effective output address (OA) size is at most 48 bits
* unless TCR.DS == 1
*/
if (!param.ds && param.gran != Gran64K) {
outputsize = MIN(outputsize, 48);
}
} else {
param = aa32_va_parameters(env, address, mmu_idx);
level = 1;
addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
inputsize = addrsize - param.tsz;
outputsize = 40;
}
/*
* We determined the region when collecting the parameters, but we
* have not yet validated that the address is valid for the region.
* Extract the top bits and verify that they all match select.
*
* For aa32, if inputsize == addrsize, then we have selected the
* region by exclusion in aa32_va_parameters and there is no more
* validation to do here.
*/
if (inputsize < addrsize) {
target_ulong top_bits = sextract64(address, inputsize,
addrsize - inputsize);
if (-top_bits != param.select) {
/* The gap between the two regions is a Translation fault */
goto do_translation_fault;
}
}
stride = arm_granule_bits(param.gran) - 3;
/*
* Note that QEMU ignores shareability and cacheability attributes,
* so we don't need to do anything with the SH, ORGN, IRGN fields
* in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
* ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
* implement any ASID-like capability so we can ignore it (instead
* we will always flush the TLB any time the ASID is changed).
*/
ttbr = regime_ttbr(env, mmu_idx, param.select);
/*
* Here we should have set up all the parameters for the translation:
* inputsize, ttbr, epd, stride, tbi
*/
if (param.epd) {
/*
* Translation table walk disabled => Translation fault on TLB miss
* Note: This is always 0 on 64-bit EL2 and EL3.
*/
goto do_translation_fault;
}
if (!regime_is_stage2(mmu_idx)) {
/*
* The starting level depends on the virtual address size (which can
* be up to 48 bits) and the translation granule size. It indicates
* the number of strides (stride bits at a time) needed to
* consume the bits of the input address. In the pseudocode this is:
* level = 4 - RoundUp((inputsize - grainsize) / stride)
* where their 'inputsize' is our 'inputsize', 'grainsize' is
* our 'stride + 3' and 'stride' is our 'stride'.
* Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
* = 4 - (inputsize - stride - 3 + stride - 1) / stride
* = 4 - (inputsize - 4) / stride;
*/
level = 4 - (inputsize - 4) / stride;
} else {
int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
inputsize, stride);
if (startlevel == INT_MIN) {
level = 0;
goto do_translation_fault;
}
level = startlevel;
}
indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
/* Now we can extract the actual base address from the TTBR */
descaddr = extract64(ttbr, 0, 48);
/*
* For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
*
* Otherwise, if the base address is out of range, raise AddressSizeFault.
* In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
* but we've just cleared the bits above 47, so simplify the test.
*/
if (outputsize > 48) {
descaddr |= extract64(ttbr, 2, 4) << 48;
} else if (descaddr >> outputsize) {
level = 0;
fi->type = ARMFault_AddressSize;
goto do_fault;
}
/*
* We rely on this masking to clear the RES0 bits at the bottom of the TTBR
* and also to mask out CnP (bit 0) which could validly be non-zero.
*/
descaddr &= ~indexmask;
/*
* For AArch32, the address field in the descriptor goes up to bit 39
* for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
* or an AddressSize fault is raised. So for v8 we extract those SBZ
* bits as part of the address, which will be checked via outputsize.
* For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
* the highest bits of a 52-bit output are placed elsewhere.
*/
if (param.ds) {
descaddrmask = MAKE_64BIT_MASK(0, 50);
} else if (arm_feature(env, ARM_FEATURE_V8)) {
descaddrmask = MAKE_64BIT_MASK(0, 48);
} else {
descaddrmask = MAKE_64BIT_MASK(0, 40);
}
descaddrmask &= ~indexmask_grainsize;
tableattrs = 0;
next_level:
descaddr |= (address >> (stride * (4 - level))) & indexmask;
descaddr &= ~7ULL;
/*
* Process the NSTable bit from the previous level. This changes
* the table address space and the output space from Secure to
* NonSecure. With RME, the EL3 translation regime does not change
* from Root to NonSecure.
*/
if (ptw->in_space == ARMSS_Secure
&& !regime_is_stage2(mmu_idx)
&& extract32(tableattrs, 4, 1)) {
/*
* Stage2_S -> Stage2 or Phys_S -> Phys_NS
* Assert the relative order of the secure/non-secure indexes.
*/
QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
ptw->in_ptw_idx += 1;
ptw->in_space = ARMSS_NonSecure;
}
if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
goto do_fault;
}
descriptor = arm_ldq_ptw(env, ptw, fi);
if (fi->type != ARMFault_None) {
goto do_fault;
}
new_descriptor = descriptor;
restart_atomic_update:
if (!(descriptor & 1) ||
(!(descriptor & 2) &&
!lpae_block_desc_valid(cpu, param.ds, param.gran, level))) {
/* Invalid, or a block descriptor at an invalid level */
goto do_translation_fault;
}
descaddr = descriptor & descaddrmask;
/*
* For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
* of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
* descaddr are in [9:8]. Otherwise, if descaddr is out of range,
* raise AddressSizeFault.
*/
if (outputsize > 48) {
if (param.ds) {
descaddr |= extract64(descriptor, 8, 2) << 50;
} else {
descaddr |= extract64(descriptor, 12, 4) << 48;
}
} else if (descaddr >> outputsize) {
fi->type = ARMFault_AddressSize;
goto do_fault;
}
if ((descriptor & 2) && (level < 3)) {
/*
* Table entry. The top five bits are attributes which may
* propagate down through lower levels of the table (and
* which are all arranged so that 0 means "no effect", so
* we can gather them up by ORing in the bits at each level).
*/
tableattrs |= extract64(descriptor, 59, 5);
level++;
indexmask = indexmask_grainsize;
goto next_level;
}
/*
* Block entry at level 1 or 2, or page entry at level 3.
* These are basically the same thing, although the number
* of bits we pull in from the vaddr varies. Note that although
* descaddrmask masks enough of the low bits of the descriptor
* to give a correct page or table address, the address field
* in a block descriptor is smaller; so we need to explicitly
* clear the lower bits here before ORing in the low vaddr bits.
*
* Afterward, descaddr is the final physical address.
*/
page_size = (1ULL << ((stride * (4 - level)) + 3));
descaddr &= ~(hwaddr)(page_size - 1);
descaddr |= (address & (page_size - 1));
if (likely(!ptw->in_debug)) {
/*
* Access flag.
* If HA is enabled, prepare to update the descriptor below.
* Otherwise, pass the access fault on to software.
*/
if (!(descriptor & (1 << 10))) {
if (param.ha) {
new_descriptor |= 1 << 10; /* AF */
} else {
fi->type = ARMFault_AccessFlag;
goto do_fault;
}
}
/*
* Dirty Bit.
* If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
* bit for writeback. The actual write protection test may still be
* overridden by tableattrs, to be merged below.
*/
if (param.hd
&& extract64(descriptor, 51, 1) /* DBM */
&& access_type == MMU_DATA_STORE) {
if (regime_is_stage2(mmu_idx)) {
new_descriptor |= 1ull << 7; /* set S2AP[1] */
} else {
new_descriptor &= ~(1ull << 7); /* clear AP[2] */
}
}
}
/*
* Extract attributes from the (modified) descriptor, and apply
* table descriptors. Stage 2 table descriptors do not include
* any attribute fields. HPD disables all the table attributes
* except NSTable (which we have already handled).
*/
attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
if (!regime_is_stage2(mmu_idx)) {
if (!param.hpd) {
attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */
/*
* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
* means "force PL1 access only", which means forcing AP[1] to 0.
*/
attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */
}
}
ap = extract32(attrs, 6, 2);
out_space = ptw->in_space;
if (regime_is_stage2(mmu_idx)) {
/*
* R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
* The bit remains ignored for other security states.
* R_YMCSL: Executing an insn fetched from non-Realm causes
* a stage2 permission fault.
*/
if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
out_space = ARMSS_NonSecure;
result->f.prot = get_S2prot_noexecute(ap);
} else {
xn = extract64(attrs, 53, 2);
result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
}
result->cacheattrs.is_s2_format = true;
result->cacheattrs.attrs = extract32(attrs, 2, 4);
/*
* Security state does not really affect HCR_EL2.FWB;
* we only need to filter FWB for aa32 or other FEAT.
*/
device = S2_attrs_are_device(arm_hcr_el2_eff(env),
result->cacheattrs.attrs);
} else {
int nse, ns = extract32(attrs, 5, 1);
uint8_t attrindx;
uint64_t mair;
switch (out_space) {
case ARMSS_Root:
/*
* R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
* R_XTYPW: NSE and NS together select the output pa space.
*/
nse = extract32(attrs, 11, 1);
out_space = (nse << 1) | ns;
if (out_space == ARMSS_Secure &&
!cpu_isar_feature(aa64_sel2, cpu)) {
out_space = ARMSS_NonSecure;
}
break;
case ARMSS_Secure:
if (ns) {
out_space = ARMSS_NonSecure;
}
break;
case ARMSS_Realm:
switch (mmu_idx) {
case ARMMMUIdx_Stage1_E0:
case ARMMMUIdx_Stage1_E1:
case ARMMMUIdx_Stage1_E1_PAN:
/* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
break;
case ARMMMUIdx_E2:
case ARMMMUIdx_E20_0:
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
/*
* R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
* NS changes the output to non-secure space.
*/
if (ns) {
out_space = ARMSS_NonSecure;
}
break;
default:
g_assert_not_reached();
}
break;
case ARMSS_NonSecure:
/* R_QRMFF: For NonSecure state, the NS bit is RES0. */
break;
default:
g_assert_not_reached();
}
xn = extract64(attrs, 54, 1);
pxn = extract64(attrs, 53, 1);
if (el == 1 && nv_nv1_enabled(env, ptw)) {
/*
* With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page
* descriptor bit 54 holds PXN, 53 is RES0, and the effective value
* of UXN is 0. Similarly for bits 59 and 60 in table descriptors
* (which we have already folded into bits 53 and 54 of attrs).
* AP[1] (descriptor bit 6, our ap bit 0) is treated as 0.
* Similarly, APTable[0] from the table descriptor is treated as 0;
* we already folded this into AP[1] and squashing that to 0 does
* the right thing.
*/
pxn = xn;
xn = 0;
ap &= ~1;
}
/*
* Note that we modified ptw->in_space earlier for NSTable, but
* result->f.attrs retains a copy of the original security space.
*/
result->f.prot = get_S1prot(env, mmu_idx, aarch64, ap, xn, pxn,
result->f.attrs.space, out_space);
/* Index into MAIR registers for cache attributes */
attrindx = extract32(attrs, 2, 3);
mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
assert(attrindx <= 7);
result->cacheattrs.is_s2_format = false;
result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
/* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */
}
device = S1_attrs_are_device(result->cacheattrs.attrs);
}
/*
* Enable alignment checks on Device memory.
*
* Per R_XCHFJ, the correct ordering for alignment, permission,
* and stage 2 faults is:
* - Alignment fault caused by the memory type
* - Permission fault
* - A stage 2 fault on the memory access
* Perform the alignment check now, so that we recognize it in
* the correct order. Set TLB_CHECK_ALIGNED so that any subsequent
* softmmu tlb hit will also check the alignment; clear along the
* non-device path so that tlb_fill_flags is consistent in the
* event of restart_atomic_update.
*
* In v7, for a CPU without the Virtualization Extensions this
* access is UNPREDICTABLE; we choose to make it take the alignment
* fault as is required for a v7VE CPU. (QEMU doesn't emulate any
* CPUs with ARM_FEATURE_LPAE but not ARM_FEATURE_V7VE anyway.)
*/
if (device) {
unsigned a_bits = memop_atomicity_bits(memop);
if (address & ((1 << a_bits) - 1)) {
fi->type = ARMFault_Alignment;
goto do_fault;
}
result->f.tlb_fill_flags = TLB_CHECK_ALIGNED;
} else {
result->f.tlb_fill_flags = 0;
}
if (!(result->f.prot & (1 << access_type))) {
fi->type = ARMFault_Permission;
goto do_fault;
}
/* If FEAT_HAFDBS has made changes, update the PTE. */
if (new_descriptor != descriptor) {
new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
if (fi->type != ARMFault_None) {
goto do_fault;
}
/*
* I_YZSVV says that if the in-memory descriptor has changed,
* then we must use the information in that new value
* (which might include a different output address, different
* attributes, or generate a fault).
* Restart the handling of the descriptor value from scratch.
*/
if (new_descriptor != descriptor) {
descriptor = new_descriptor;
goto restart_atomic_update;
}
}
result->f.attrs.space = out_space;
result->f.attrs.secure = arm_space_is_secure(out_space);
/*
* For FEAT_LPA2 and effective DS, the SH field in the attributes
* was re-purposed for output address bits. The SH attribute in
* that case comes from TCR_ELx, which we extracted earlier.
*/
if (param.ds) {
result->cacheattrs.shareability = param.sh;
} else {
result->cacheattrs.shareability = extract32(attrs, 8, 2);
}
result->f.phys_addr = descaddr;
result->f.lg_page_size = ctz64(page_size);
return false;
do_translation_fault:
fi->type = ARMFault_Translation;
do_fault:
if (fi->s1ptw) {
/* Retain the existing stage 2 fi->level */
assert(fi->stage2);
} else {
fi->level = level;
fi->stage2 = regime_is_stage2(mmu_idx);
}
fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx);
return true;
}
static bool get_phys_addr_pmsav5(CPUARMState *env,
S1Translate *ptw,
uint32_t address,
MMUAccessType access_type,
GetPhysAddrResult *result,
ARMMMUFaultInfo *fi)
{
int n;
uint32_t mask;
uint32_t base;
ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
bool is_user = regime_is_user(env, mmu_idx);
if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
/* MPU disabled. */
result->f.phys_addr = address;
result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
return false;
}
result->f.phys_addr = address;
for (n = 7; n >= 0; n--) {
base = env->cp15.c6_region[n];
if ((base & 1) == 0) {
continue;
}
mask = 1 << ((base >> 1) & 0x1f);
/* Keep this shift separate from the above to avoid an
(undefined) << 32. */
mask = (mask << 1) - 1;
if (((base ^ address) & ~mask) == 0) {
break;
}
}
if (n < 0) {
fi->type = ARMFault_Background;
return true;
}
if (access_type == MMU_INST_FETCH) {
mask = env->cp15.pmsav5_insn_ap;
} else {
mask = env->cp15.pmsav5_data_ap;
}
mask = (mask >> (n * 4)) & 0xf;
switch (mask) {
case 0:
fi->type = ARMFault_Permission;
fi->level = 1;
return true;
case 1:
if (is_user) {
fi->type = ARMFault_Permission;
fi->level = 1;
return true;
}
result->f.prot = PAGE_READ | PAGE_WRITE;
break;
case 2:
result->f.prot = PAGE_READ;
if (!is_user) {
result->f.prot |= PAGE_WRITE;
}
break;
case 3:
result->f.prot = PAGE_READ | PAGE_WRITE;
break;
case 5:
if (is_user) {
fi->type = ARMFault_Permission;
fi->level = 1;
return true;
}
result->f.prot = PAGE_READ;
break;
case 6:
result->f.prot = PAGE_READ;
break;
default:
/* Bad permission. */
fi->type = ARMFault_Permission;
fi->level = 1;
return true;
}
result->f.prot |= PAGE_EXEC;
return false;
}
static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
int32_t address, uint8_t *prot)
{
if (!arm_feature(env, ARM_FEATURE_M)) {
*prot = PAGE_READ | PAGE_WRITE;
switch (address) {
case 0xF0000000 ... 0xFFFFFFFF:
if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
/* hivecs execing is ok */
*prot |= PAGE_EXEC;
}
break;
case 0x00000000 ... 0x7FFFFFFF:
*prot |= PAGE_EXEC;
break;
}
} else {
/* Default system address map for M profile cores.
* The architecture specifies which regions are execute-never;
* at the MPU level no other checks are defined.
*/
switch (address) {
case 0x00000000 ... 0x1fffffff: /* ROM */
case 0x20000000 ... 0x3fffffff: /* SRAM */
case 0x60000000 ... 0x7fffffff: /* RAM */
case 0x80000000 ... 0x9fffffff: /* RAM */
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
break;
case 0x40000000 ... 0x5fffffff: /* Peripheral */
case 0xa0000000 ... 0xbfffffff: /* Device */
case 0xc0000000 ... 0xdfffffff: /* Device */
case 0xe0000000 ... 0xffffffff: /* System */
*prot = PAGE_READ | PAGE_WRITE;
break;
default:
g_assert_not_reached();
}
}
}
static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
{
/* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
return arm_feature(env, ARM_FEATURE_M) &&
extract32(address, 20, 12) == 0xe00;
}
static bool m_is_system_region(CPUARMState *env, uint32_t address)
{
/*
* True if address is in the M profile system region
* 0xe0000000 - 0xffffffff
*/
return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
}
static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
bool is_secure, bool is_user)
{
/*
* Return true if we should use the default memory map as a
* "background" region if there are no hits against any MPU regions.
*/
CPUARMState *env = &cpu->env;
if (is_user) {
return false;
}
if (arm_feature(env, ARM_FEATURE_M)) {
return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
}
if (mmu_idx == ARMMMUIdx_Stage2) {
return false;
}
return regime_sctlr(env, mmu_idx) & SCTLR_BR;
}
static bool get_phys_addr_pmsav7(CPUARMState *env,
S1Translate *ptw,
uint32_t address,
MMUAccessType access_type,
GetPhysAddrResult *result,
ARMMMUFaultInfo *fi)
{
ARMCPU *cpu = env_archcpu(env);
int n;
ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
bool is_user = regime_is_user(env, mmu_idx);
bool secure = arm_space_is_secure(ptw->in_space);
result->f.phys_addr = address;
result->f.lg_page_size = TARGET_PAGE_BITS;
result->f.prot = 0;
if (regime_translation_disabled(env, mmu_idx, ptw->in_space) ||
m_is_ppb_region(env, address)) {
/*
* MPU disabled or M profile PPB access: use default memory map.
* The other case which uses the default memory map in the
* v7M ARM ARM pseudocode is exception vector reads from the vector
* table. In QEMU those accesses are done in arm_v7m_load_vector(),
* which always does a direct read using address_space_ldl(), rather
* than going via this function, so we don't need to check that here.
*/
get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
} else { /* MPU enabled */
for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
/* region search */
uint32_t base = env->pmsav7.drbar[n];
uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
uint32_t rmask;
bool srdis = false;
if (!(env->pmsav7.drsr[n] & 0x1)) {
continue;
}
if (!rsize) {
qemu_log_mask(LOG_GUEST_ERROR,
"DRSR[%d]: Rsize field cannot be 0\n", n);
continue;
}
rsize++;
rmask = (1ull << rsize) - 1;
if (base & rmask) {
qemu_log_mask(LOG_GUEST_ERROR,
"DRBAR[%d]: 0x%" PRIx32 " misaligned "
"to DRSR region size, mask = 0x%" PRIx32 "\n",
n, base, rmask);
continue;
}
if (address < base || address > base + rmask) {
/*
* Address not in this region. We must check whether the
* region covers addresses in the same page as our address.
* In that case we must not report a size that covers the
* whole page for a subsequent hit against a different MPU
* region or the background region, because it would result in
* incorrect TLB hits for subsequent accesses to addresses that
* are in this MPU region.
*/
if (ranges_overlap(base, rmask,
address & TARGET_PAGE_MASK,
TARGET_PAGE_SIZE)) {
result->f.lg_page_size = 0;
}
continue;
}
/* Region matched */
if (rsize >= 8) { /* no subregions for regions < 256 bytes */
int i, snd;
uint32_t srdis_mask;
rsize -= 3; /* sub region size (power of 2) */
snd = ((address - base) >> rsize) & 0x7;
srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
srdis_mask = srdis ? 0x3 : 0x0;
for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
/*
* This will check in groups of 2, 4 and then 8, whether
* the subregion bits are consistent. rsize is incremented
* back up to give the region size, considering consistent
* adjacent subregions as one region. Stop testing if rsize
* is already big enough for an entire QEMU page.
*/
int snd_rounded = snd & ~(i - 1);
uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
snd_rounded + 8, i);
if (srdis_mask ^ srdis_multi) {
break;
}
srdis_mask = (srdis_mask << i) | srdis_mask;
rsize++;
}
}
if (srdis) {
continue;
}
if (rsize < TARGET_PAGE_BITS) {
result->f.lg_page_size = rsize;
}
break;
}
if (n == -1) { /* no hits */
if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
/* background fault */
fi->type = ARMFault_Background;
return true;
}
get_phys_addr_pmsav7_default(env, mmu_idx, address,
&result->f.prot);
} else { /* a MPU hit! */
uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
if (m_is_system_region(env, address)) {
/* System space is always execute never */
xn = 1;
}
if (is_user) { /* User mode AP bit decoding */
switch (ap) {
case 0:
case 1:
case 5:
break; /* no access */
case 3:
result->f.prot |= PAGE_WRITE;
/* fall through */
case 2:
case 6:
result->f.prot |= PAGE_READ | PAGE_EXEC;
break;
case 7:
/* for v7M, same as 6; for R profile a reserved value */
if (arm_feature(env, ARM_FEATURE_M)) {
result->f.prot |= PAGE_READ | PAGE_EXEC;
break;
}
/* fall through */
default:
qemu_log_mask(LOG_GUEST_ERROR,
"DRACR[%d]: Bad value for AP bits: 0x%"
PRIx32 "\n", n, ap);
}
} else { /* Priv. mode AP bits decoding */
switch (ap) {
case 0:
break; /* no access */
case 1:
case 2:
case 3:
result->f.prot |= PAGE_WRITE;
/* fall through */
case 5:
case 6:
result->f.prot |= PAGE_READ | PAGE_EXEC;
break;
case 7:
/* for v7M, same as 6; for R profile a reserved value */
if (arm_feature(env, ARM_FEATURE_M)) {
result->f.prot |= PAGE_READ | PAGE_EXEC;
break;
}
/* fall through */
default:
qemu_log_mask(LOG_GUEST_ERROR,
"DRACR[%d]: Bad value for AP bits: 0x%"
PRIx32 "\n", n, ap);
}
}
/* execute never */
if (xn) {
result->f.prot &= ~PAGE_EXEC;
}
}
}
fi->type = ARMFault_Permission;
fi->level = 1;
return !(result->f.prot & (1 << access_type));
}
static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
uint32_t secure)
{
if (regime_el(env, mmu_idx) == 2) {
return env->pmsav8.hprbar;
} else {
return env->pmsav8.rbar[secure];
}
}
static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
uint32_t secure)
{
if (regime_el(env, mmu_idx) == 2) {
return env->pmsav8.hprlar;
} else {
return env->pmsav8.rlar[secure];
}
}
bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
bool secure, GetPhysAddrResult *result,
ARMMMUFaultInfo *fi, uint32_t *mregion)
{
/*
* Perform a PMSAv8 MPU lookup (without also doing the SAU check
* that a full phys-to-virt translation does).
* mregion is (if not NULL) set to the region number which matched,
* or -1 if no region number is returned (MPU off, address did not
* hit a region, address hit in multiple regions).
* If the region hit doesn't cover the entire TARGET_PAGE the address
* is within, then we set the result page_size to 1 to force the
* memory system to use a subpage.
*/
ARMCPU *cpu = env_archcpu(env);
bool is_user = regime_is_user(env, mmu_idx);
int n;
int matchregion = -1;
bool hit = false;
uint32_t addr_page_base = address & TARGET_PAGE_MASK;
uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
int region_counter;
if (regime_el(env, mmu_idx) == 2) {
region_counter = cpu->pmsav8r_hdregion;
} else {
region_counter = cpu->pmsav7_dregion;
}
result->f.lg_page_size = TARGET_PAGE_BITS;
result->f.phys_addr = address;
result->f.prot = 0;
if (mregion) {
*mregion = -1;
}
if (mmu_idx == ARMMMUIdx_Stage2) {
fi->stage2 = true;
}
/*
* Unlike the ARM ARM pseudocode, we don't need to check whether this
* was an exception vector read from the vector table (which is always
* done using the default system address map), because those accesses
* are done in arm_v7m_load_vector(), which always does a direct
* read using address_space_ldl(), rather than going via this function.
*/
if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) {
/* MPU disabled */
hit = true;
} else if (m_is_ppb_region(env, address)) {
hit = true;
} else {
if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
hit = true;
}
uint32_t bitmask;
if (arm_feature(env, ARM_FEATURE_M)) {
bitmask = 0x1f;
} else {
bitmask = 0x3f;
fi->level = 0;
}
for (n = region_counter - 1; n >= 0; n--) {
/* region search */
/*
* Note that the base address is bits [31:x] from the register
* with bits [x-1:0] all zeroes, but the limit address is bits
* [31:x] from the register with bits [x:0] all ones. Where x is
* 5 for Cortex-M and 6 for Cortex-R
*/
uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
/* Region disabled */
continue;
}
if (address < base || address > limit) {
/*
* Address not in this region. We must check whether the
* region covers addresses in the same page as our address.
* In that case we must not report a size that covers the
* whole page for a subsequent hit against a different MPU
* region or the background region, because it would result in
* incorrect TLB hits for subsequent accesses to addresses that
* are in this MPU region.
*/
if (limit >= base &&
ranges_overlap(base, limit - base + 1,
addr_page_base,
TARGET_PAGE_SIZE)) {
result->f.lg_page_size = 0;
}
continue;
}
if (base > addr_page_base || limit < addr_page_limit) {
result->f.lg_page_size = 0;
}
if (matchregion != -1) {
/*
* Multiple regions match -- always a failure (unlike
* PMSAv7 where highest-numbered-region wins)
*/
fi->type = ARMFault_Permission;
if (arm_feature(env, ARM_FEATURE_M)) {
fi->level = 1;
}
return true;
}
matchregion = n;
hit = true;
}
}
if (!hit) {
if (arm_feature(env, ARM_FEATURE_M)) {
fi->type = ARMFault_Background;
} else {
fi->type = ARMFault_Permission;
}
return true;
}
if (matchregion == -1) {
/* hit using the background region */
get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
} else {
uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
uint32_t ap = extract32(matched_rbar, 1, 2);
uint32_t xn = extract32(matched_rbar, 0, 1);
bool pxn = false;
if (arm_feature(env, ARM_FEATURE_V8_1M)) {
pxn = extract32(matched_rlar, 4, 1);
}
if (m_is_system_region(env, address)) {
/* System space is always execute never */
xn = 1;
}
if (regime_el(env, mmu_idx) == 2) {
result->f.prot = simple_ap_to_rw_prot_is_user(ap,
mmu_idx != ARMMMUIdx_E2);
} else {
result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
}
if (!arm_feature(env, ARM_FEATURE_M)) {
uint8_t attrindx = extract32(matched_rlar, 1, 3);
uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
uint8_t sh = extract32(matched_rlar, 3, 2);
if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
xn = 0x1;
}
if ((regime_el(env, mmu_idx) == 1) &&
regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
pxn = 0x1;
}
result->cacheattrs.is_s2_format = false;
result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
result->cacheattrs.shareability = sh;
}
if (result->f.prot && !xn && !(pxn && !is_user)) {
result->f.prot |= PAGE_EXEC;
}
if (mregion) {
*mregion = matchregion;
}
}
fi->type = ARMFault_Permission;
if (arm_feature(env, ARM_FEATURE_M)) {
fi->level = 1;
}
return !(result->f.prot & (1 << access_type));
}
static bool v8m_is_sau_exempt(CPUARMState *env,
uint32_t address, MMUAccessType access_type)
{
/*
* The architecture specifies that certain address ranges are
* exempt from v8M SAU/IDAU checks.
*/
return
(access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
(address >= 0xe0000000 && address <= 0xe0002fff) ||
(address >= 0xe000e000 && address <= 0xe000efff) ||
(address >= 0xe002e000 && address <= 0xe002efff) ||
(address >= 0xe0040000 && address <= 0xe0041fff) ||
(address >= 0xe00ff000 && address <= 0xe00fffff);
}
void v8m_security_lookup(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
bool is_secure, V8M_SAttributes *sattrs)
{
/*
* Look up the security attributes for this address. Compare the
* pseudocode SecurityCheck() function.
* We assume the caller has zero-initialized *sattrs.
*/
ARMCPU *cpu = env_archcpu(env);
int r;
bool idau_exempt = false, idau_ns = true, idau_nsc = true;
int idau_region = IREGION_NOTVALID;
uint32_t addr_page_base = address & TARGET_PAGE_MASK;
uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
if (cpu->idau) {
IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
&idau_nsc);
}
if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
/* 0xf0000000..0xffffffff is always S for insn fetches */
return;
}
if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
sattrs->ns = !is_secure;
return;
}
if (idau_region != IREGION_NOTVALID) {
sattrs->irvalid = true;
sattrs->iregion = idau_region;
}
switch (env->sau.ctrl & 3) {
case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
break;
case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
sattrs->ns = true;
break;
default: /* SAU.ENABLE == 1 */
for (r = 0; r < cpu->sau_sregion; r++) {
if (env->sau.rlar[r] & 1) {
uint32_t base = env->sau.rbar[r] & ~0x1f;
uint32_t limit = env->sau.rlar[r] | 0x1f;
if (base <= address && limit >= address) {
if (base > addr_page_base || limit < addr_page_limit) {
sattrs->subpage = true;
}
if (sattrs->srvalid) {
/*
* If we hit in more than one region then we must report
* as Secure, not NS-Callable, with no valid region
* number info.
*/
sattrs->ns = false;
sattrs->nsc = false;
sattrs->sregion = 0;
sattrs->srvalid = false;
break;
} else {
if (env->sau.rlar[r] & 2) {
sattrs->nsc = true;
} else {
sattrs->ns = true;
}
sattrs->srvalid = true;
sattrs->sregion = r;
}
} else {
/*
* Address not in this region. We must check whether the
* region covers addresses in the same page as our address.
* In that case we must not report a size that covers the
* whole page for a subsequent hit against a different MPU
* region or the background region, because it would result
* in incorrect TLB hits for subsequent accesses to
* addresses that are in this MPU region.
*/
if (limit >= base &&
ranges_overlap(base, limit - base + 1,
addr_page_base,
TARGET_PAGE_SIZE)) {
sattrs->subpage = true;
}
}
}
}
break;
}
/*
* The IDAU will override the SAU lookup results if it specifies
* higher security than the SAU does.
*/
if (!idau_ns) {
if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
sattrs->ns = false;
sattrs->nsc = idau_nsc;
}
}
}
static bool get_phys_addr_pmsav8(CPUARMState *env,
S1Translate *ptw,
uint32_t address,
MMUAccessType access_type,
GetPhysAddrResult *result,
ARMMMUFaultInfo *fi)
{
V8M_SAttributes sattrs = {};
ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
bool secure = arm_space_is_secure(ptw->in_space);
bool ret;
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
v8m_security_lookup(env, address, access_type, mmu_idx,
secure, &sattrs);
if (access_type == MMU_INST_FETCH) {
/*
* Instruction fetches always use the MMU bank and the
* transaction attribute determined by the fetch address,
* regardless of CPU state. This is painful for QEMU
* to handle, because it would mean we need to encode
* into the mmu_idx not just the (user, negpri) information
* for the current security state but also that for the
* other security state, which would balloon the number
* of mmu_idx values needed alarmingly.
* Fortunately we can avoid this because it's not actually
* possible to arbitrarily execute code from memory with
* the wrong security attribute: it will always generate
* an exception of some kind or another, apart from the
* special case of an NS CPU executing an SG instruction
* in S&NSC memory. So we always just fail the translation
* here and sort things out in the exception handler
* (including possibly emulating an SG instruction).
*/
if (sattrs.ns != !secure) {
if (sattrs.nsc) {
fi->type = ARMFault_QEMU_NSCExec;
} else {
fi->type = ARMFault_QEMU_SFault;
}
result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
result->f.phys_addr = address;
result->f.prot = 0;
return true;
}
} else {
/*
* For data accesses we always use the MMU bank indicated
* by the current CPU state, but the security attributes
* might downgrade a secure access to nonsecure.
*/
if (sattrs.ns) {
result->f.attrs.secure = false;
result->f.attrs.space = ARMSS_NonSecure;
} else if (!secure) {
/*
* NS access to S memory must fault.
* Architecturally we should first check whether the
* MPU information for this address indicates that we
* are doing an unaligned access to Device memory, which
* should generate a UsageFault instead. QEMU does not
* currently check for that kind of unaligned access though.
* If we added it we would need to do so as a special case
* for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
*/
fi->type = ARMFault_QEMU_SFault;
result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
result->f.phys_addr = address;
result->f.prot = 0;
return true;
}
}
}
ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
result, fi, NULL);
if (sattrs.subpage) {
result->f.lg_page_size = 0;
}
return ret;
}
/*
* Translate from the 4-bit stage 2 representation of
* memory attributes (without cache-allocation hints) to
* the 8-bit representation of the stage 1 MAIR registers
* (which includes allocation hints).
*
* ref: shared/translation/attrs/S2AttrDecode()
* .../S2ConvertAttrsHints()
*/
static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
{
uint8_t hiattr = extract32(s2attrs, 2, 2);
uint8_t loattr = extract32(s2attrs, 0, 2);
uint8_t hihint = 0, lohint = 0;
if (hiattr != 0) { /* normal memory */
if (hcr & HCR_CD) { /* cache disabled */
hiattr = loattr = 1; /* non-cacheable */
} else {
if (hiattr != 1) { /* Write-through or write-back */
hihint = 3; /* RW allocate */
}
if (loattr != 1) { /* Write-through or write-back */
lohint = 3; /* RW allocate */
}
}
}
return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
}
/*
* Combine either inner or outer cacheability attributes for normal
* memory, according to table D4-42 and pseudocode procedure
* CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
*
* NB: only stage 1 includes allocation hints (RW bits), leading to
* some asymmetry.
*/
static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
{
if (s1 == 4 || s2 == 4) {
/* non-cacheable has precedence */
return 4;
} else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
/* stage 1 write-through takes precedence */
return s1;
} else if (extract32(s2, 2, 2) == 2) {
/* stage 2 write-through takes precedence, but the allocation hint
* is still taken from stage 1
*/
return (2 << 2) | extract32(s1, 0, 2);
} else { /* write-back */
return s1;
}
}
/*
* Combine the memory type and cacheability attributes of
* s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
* combined attributes in MAIR_EL1 format.
*/
static uint8_t combined_attrs_nofwb(uint64_t hcr,
ARMCacheAttrs s1, ARMCacheAttrs s2)
{
uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
if (s2.is_s2_format) {
s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
} else {
s2_mair_attrs = s2.attrs;
}
s1lo = extract32(s1.attrs, 0, 4);
s2lo = extract32(s2_mair_attrs, 0, 4);
s1hi = extract32(s1.attrs, 4, 4);
s2hi = extract32(s2_mair_attrs, 4, 4);
/* Combine memory type and cacheability attributes */
if (s1hi == 0 || s2hi == 0) {
/* Device has precedence over normal */
if (s1lo == 0 || s2lo == 0) {
/* nGnRnE has precedence over anything */
ret_attrs = 0;
} else if (s1lo == 4 || s2lo == 4) {
/* non-Reordering has precedence over Reordering */
ret_attrs = 4; /* nGnRE */
} else if (s1lo == 8 || s2lo == 8) {
/* non-Gathering has precedence over Gathering */
ret_attrs = 8; /* nGRE */
} else {
ret_attrs = 0xc; /* GRE */
}
} else { /* Normal memory */
/* Outer/inner cacheability combine independently */
ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
| combine_cacheattr_nibble(s1lo, s2lo);
}
return ret_attrs;
}
static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
{
/*
* Given the 4 bits specifying the outer or inner cacheability
* in MAIR format, return a value specifying Normal Write-Back,
* with the allocation and transient hints taken from the input
* if the input specified some kind of cacheable attribute.
*/
if (attr == 0 || attr == 4) {
/*
* 0 == an UNPREDICTABLE encoding
* 4 == Non-cacheable
* Either way, force Write-Back RW allocate non-transient
*/
return 0xf;
}
/* Change WriteThrough to WriteBack, keep allocation and transient hints */
return attr | 4;
}
/*
* Combine the memory type and cacheability attributes of
* s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
* combined attributes in MAIR_EL1 format.
*/
static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
{
assert(s2.is_s2_format && !s1.is_s2_format);
switch (s2.attrs) {
case 7:
/* Use stage 1 attributes */
return s1.attrs;
case 6:
/*
* Force Normal Write-Back. Note that if S1 is Normal cacheable
* then we take the allocation hints from it; otherwise it is
* RW allocate, non-transient.
*/
if ((s1.attrs & 0xf0) == 0) {
/* S1 is Device */
return 0xff;
}
/* Need to check the Inner and Outer nibbles separately */
return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
case 5:
/* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
if ((s1.attrs & 0xf0) == 0) {
return s1.attrs;
}
return 0x44;
case 0 ... 3:
/* Force Device, of subtype specified by S2 */
return s2.attrs << 2;
default:
/*
* RESERVED values (including RES0 descriptor bit [5] being nonzero);
* arbitrarily force Device.
*/
return 0;
}
}
/*
* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
* and CombineS1S2Desc()
*
* @env: CPUARMState
* @s1: Attributes from stage 1 walk
* @s2: Attributes from stage 2 walk
*/
static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
ARMCacheAttrs s1, ARMCacheAttrs s2)
{
ARMCacheAttrs ret;
bool tagged = false;
assert(!s1.is_s2_format);
ret.is_s2_format = false;
if (s1.attrs == 0xf0) {
tagged = true;
s1.attrs = 0xff;
}
/* Combine shareability attributes (table D4-43) */
if (s1.shareability == 2 || s2.shareability == 2) {
/* if either are outer-shareable, the result is outer-shareable */
ret.shareability = 2;
} else if (s1.shareability == 3 || s2.shareability == 3) {
/* if either are inner-shareable, the result is inner-shareable */
ret.shareability = 3;
} else {
/* both non-shareable */
ret.shareability = 0;
}
/* Combine memory type and cacheability attributes */
if (hcr & HCR_FWB) {
ret.attrs = combined_attrs_fwb(s1, s2);
} else {
ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
}
/*
* Any location for which the resultant memory type is any
* type of Device memory is always treated as Outer Shareable.
* Any location for which the resultant memory type is Normal
* Inner Non-cacheable, Outer Non-cacheable is always treated
* as Outer Shareable.
* TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
*/
if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
ret.shareability = 2;
}
/* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
if (tagged && ret.attrs == 0xff) {
ret.attrs = 0xf0;
}
return ret;
}
/*
* MMU disabled. S1 addresses within aa64 translation regimes are
* still checked for bounds -- see AArch64.S1DisabledOutput().
*/
static bool get_phys_addr_disabled(CPUARMState *env,
S1Translate *ptw,
vaddr address,
MMUAccessType access_type,
GetPhysAddrResult *result,
ARMMMUFaultInfo *fi)
{
ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
uint8_t memattr = 0x00; /* Device nGnRnE */
uint8_t shareability = 0; /* non-shareable */
int r_el;
switch (mmu_idx) {
case ARMMMUIdx_Stage2:
case ARMMMUIdx_Stage2_S:
case ARMMMUIdx_Phys_S:
case ARMMMUIdx_Phys_NS:
case ARMMMUIdx_Phys_Root:
case ARMMMUIdx_Phys_Realm:
break;
default:
r_el = regime_el(env, mmu_idx);
if (arm_el_is_aa64(env, r_el)) {
int pamax = arm_pamax(env_archcpu(env));
uint64_t tcr = env->cp15.tcr_el[r_el];
int addrtop, tbi;
tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
if (access_type == MMU_INST_FETCH) {
tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
}
tbi = (tbi >> extract64(address, 55, 1)) & 1;
addrtop = (tbi ? 55 : 63);
if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
fi->type = ARMFault_AddressSize;
fi->level = 0;
fi->stage2 = false;
return 1;
}
/*
* When TBI is disabled, we've just validated that all of the
* bits above PAMax are zero, so logically we only need to
* clear the top byte for TBI. But it's clearer to follow
* the pseudocode set of addrdesc.paddress.
*/
address = extract64(address, 0, 52);
}
/* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
if (r_el == 1) {
uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
if (hcr & HCR_DC) {
if (hcr & HCR_DCT) {
memattr = 0xf0; /* Tagged, Normal, WB, RWA */
} else {
memattr = 0xff; /* Normal, WB, RWA */
}
}
}
if (memattr == 0) {
if (access_type == MMU_INST_FETCH) {
if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
memattr = 0xee; /* Normal, WT, RA, NT */
} else {
memattr = 0x44; /* Normal, NC, No */
}
}
shareability = 2; /* outer shareable */
}
result->cacheattrs.is_s2_format = false;
break;
}
result->f.phys_addr = address;
result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
result->f.lg_page_size = TARGET_PAGE_BITS;
result->cacheattrs.shareability = shareability;
result->cacheattrs.attrs = memattr;
return false;
}
static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
vaddr address,
MMUAccessType access_type, MemOp memop,
GetPhysAddrResult *result,
ARMMMUFaultInfo *fi)
{
hwaddr ipa;
int s1_prot, s1_lgpgsz;
ARMSecuritySpace in_space = ptw->in_space;
bool ret, ipa_secure, s1_guarded;
ARMCacheAttrs cacheattrs1;
ARMSecuritySpace ipa_space;
uint64_t hcr;
ret = get_phys_addr_nogpc(env, ptw, address, access_type,
memop, result, fi);
/* If S1 fails, return early. */
if (ret) {
return ret;
}
ipa = result->f.phys_addr;
ipa_secure = result->f.attrs.secure;
ipa_space = result->f.attrs.space;
ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
ptw->in_space = ipa_space;
ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
/*
* S1 is done, now do S2 translation.
* Save the stage1 results so that we may merge prot and cacheattrs later.
*/
s1_prot = result->f.prot;
s1_lgpgsz = result->f.lg_page_size;
s1_guarded = result->f.extra.arm.guarded;
cacheattrs1 = result->cacheattrs;
memset(result, 0, sizeof(*result));
ret = get_phys_addr_nogpc(env, ptw, ipa, access_type,
memop, result, fi);
fi->s2addr = ipa;
/* Combine the S1 and S2 perms. */
result->f.prot &= s1_prot;
/* If S2 fails, return early. */
if (ret) {
return ret;
}
/*
* If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
* this means "don't put this in the TLB"; in this case, return a
* result with lg_page_size == 0 to achieve that. Otherwise,
* use the maximum of the S1 & S2 page size, so that invalidation
* of pages > TARGET_PAGE_SIZE works correctly. (This works even though
* we know the combined result permissions etc only cover the minimum
* of the S1 and S2 page size, because we know that the common TLB code
* never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
* and passing a larger page size value only affects invalidations.)
*/
if (result->f.lg_page_size < TARGET_PAGE_BITS ||
s1_lgpgsz < TARGET_PAGE_BITS) {
result->f.lg_page_size = 0;
} else if (result->f.lg_page_size < s1_lgpgsz) {
result->f.lg_page_size = s1_lgpgsz;
}
/* Combine the S1 and S2 cache attributes. */
hcr = arm_hcr_el2_eff_secstate(env, in_space);
if (hcr & HCR_DC) {
/*
* HCR.DC forces the first stage attributes to
* Normal Non-Shareable,
* Inner Write-Back Read-Allocate Write-Allocate,
* Outer Write-Back Read-Allocate Write-Allocate.
* Do not overwrite Tagged within attrs.
*/
if (cacheattrs1.attrs != 0xf0) {
cacheattrs1.attrs = 0xff;
}
cacheattrs1.shareability = 0;
}
result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
result->cacheattrs);
/* No BTI GP information in stage 2, we just use the S1 value */
result->f.extra.arm.guarded = s1_guarded;
/*
* Check if IPA translates to secure or non-secure PA space.
* Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
*/
if (in_space == ARMSS_Secure) {
result->f.attrs.secure =
!(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
&& (ipa_secure
|| !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)));
result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure);
}
return false;
}
static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
vaddr address,
MMUAccessType access_type, MemOp memop,
GetPhysAddrResult *result,
ARMMMUFaultInfo *fi)
{
ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
ARMMMUIdx s1_mmu_idx;
/*
* The page table entries may downgrade Secure to NonSecure, but
* cannot upgrade a NonSecure translation regime's attributes
* to Secure or Realm.
*/
result->f.attrs.space = ptw->in_space;
result->f.attrs.secure = arm_space_is_secure(ptw->in_space);
switch (mmu_idx) {
case ARMMMUIdx_Phys_S:
case ARMMMUIdx_Phys_NS:
case ARMMMUIdx_Phys_Root:
case ARMMMUIdx_Phys_Realm:
/* Checking Phys early avoids special casing later vs regime_el. */
return get_phys_addr_disabled(env, ptw, address, access_type,
result, fi);
case ARMMMUIdx_Stage1_E0:
case ARMMMUIdx_Stage1_E1:
case ARMMMUIdx_Stage1_E1_PAN:
/*
* First stage lookup uses second stage for ptw; only
* Secure has both S and NS IPA and starts with Stage2_S.
*/
ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ?
ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
break;
case ARMMMUIdx_Stage2:
case ARMMMUIdx_Stage2_S:
/*
* Second stage lookup uses physical for ptw; whether this is S or
* NS may depend on the SW/NSW bits if this is a stage 2 lookup for
* the Secure EL2&0 regime.
*/
ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
break;
case ARMMMUIdx_E10_0:
s1_mmu_idx = ARMMMUIdx_Stage1_E0;
goto do_twostage;
case ARMMMUIdx_E10_1:
s1_mmu_idx = ARMMMUIdx_Stage1_E1;
goto do_twostage;
case ARMMMUIdx_E10_1_PAN:
s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
do_twostage:
/*
* Call ourselves recursively to do the stage 1 and then stage 2
* translations if mmu_idx is a two-stage regime, and EL2 present.
* Otherwise, a stage1+stage2 translation is just stage 1.
*/
ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
if (arm_feature(env, ARM_FEATURE_EL2) &&
!regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) {
return get_phys_addr_twostage(env, ptw, address, access_type,
memop, result, fi);
}
/* fall through */
default:
/* Single stage uses physical for ptw. */
ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
break;
}
result->f.attrs.user = regime_is_user(env, mmu_idx);
/*
* Fast Context Switch Extension. This doesn't exist at all in v8.
* In v7 and earlier it affects all stage 1 translations.
*/
if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
&& !arm_feature(env, ARM_FEATURE_V8)) {
if (regime_el(env, mmu_idx) == 3) {
address += env->cp15.fcseidr_s;
} else {
address += env->cp15.fcseidr_ns;
}
}
if (arm_feature(env, ARM_FEATURE_PMSA)) {
bool ret;
result->f.lg_page_size = TARGET_PAGE_BITS;
if (arm_feature(env, ARM_FEATURE_V8)) {
/* PMSAv8 */
ret = get_phys_addr_pmsav8(env, ptw, address, access_type,
result, fi);
} else if (arm_feature(env, ARM_FEATURE_V7)) {
/* PMSAv7 */
ret = get_phys_addr_pmsav7(env, ptw, address, access_type,
result, fi);
} else {
/* Pre-v7 MPU */
ret = get_phys_addr_pmsav5(env, ptw, address, access_type,
result, fi);
}
qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
" mmu_idx %u -> %s (prot %c%c%c)\n",
access_type == MMU_DATA_LOAD ? "reading" :
(access_type == MMU_DATA_STORE ? "writing" : "execute"),
(uint32_t)address, mmu_idx,
ret ? "Miss" : "Hit",
result->f.prot & PAGE_READ ? 'r' : '-',
result->f.prot & PAGE_WRITE ? 'w' : '-',
result->f.prot & PAGE_EXEC ? 'x' : '-');
return ret;
}
/* Definitely a real MMU, not an MPU */
if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
return get_phys_addr_disabled(env, ptw, address, access_type,
result, fi);
}
if (regime_using_lpae_format(env, mmu_idx)) {
return get_phys_addr_lpae(env, ptw, address, access_type,
memop, result, fi);
} else if (arm_feature(env, ARM_FEATURE_V7) ||
regime_sctlr(env, mmu_idx) & SCTLR_XP) {
return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
} else {
return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
}
}
static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
vaddr address,
MMUAccessType access_type, MemOp memop,
GetPhysAddrResult *result,
ARMMMUFaultInfo *fi)
{
if (get_phys_addr_nogpc(env, ptw, address, access_type,
memop, result, fi)) {
return true;
}
if (!granule_protection_check(env, result->f.phys_addr,
result->f.attrs.space, fi)) {
fi->type = ARMFault_GPCFOnOutput;
return true;
}
return false;
}
bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address,
MMUAccessType access_type, MemOp memop,
ARMMMUIdx mmu_idx, ARMSecuritySpace space,
GetPhysAddrResult *result,
ARMMMUFaultInfo *fi)
{
S1Translate ptw = {
.in_mmu_idx = mmu_idx,
.in_space = space,
};
return get_phys_addr_nogpc(env, &ptw, address, access_type,
memop, result, fi);
}
bool get_phys_addr(CPUARMState *env, vaddr address,
MMUAccessType access_type, MemOp memop, ARMMMUIdx mmu_idx,
GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
{
S1Translate ptw = {
.in_mmu_idx = mmu_idx,
};
ARMSecuritySpace ss;
switch (mmu_idx) {
case ARMMMUIdx_E10_0:
case ARMMMUIdx_E10_1:
case ARMMMUIdx_E10_1_PAN:
case ARMMMUIdx_E20_0:
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
case ARMMMUIdx_Stage1_E0:
case ARMMMUIdx_Stage1_E1:
case ARMMMUIdx_Stage1_E1_PAN:
case ARMMMUIdx_E2:
ss = arm_security_space_below_el3(env);
break;
case ARMMMUIdx_Stage2:
/*
* For Secure EL2, we need this index to be NonSecure;
* otherwise this will already be NonSecure or Realm.
*/
ss = arm_security_space_below_el3(env);
if (ss == ARMSS_Secure) {
ss = ARMSS_NonSecure;
}
break;
case ARMMMUIdx_Phys_NS:
case ARMMMUIdx_MPrivNegPri:
case ARMMMUIdx_MUserNegPri:
case ARMMMUIdx_MPriv:
case ARMMMUIdx_MUser:
ss = ARMSS_NonSecure;
break;
case ARMMMUIdx_Stage2_S:
case ARMMMUIdx_Phys_S:
case ARMMMUIdx_MSPrivNegPri:
case ARMMMUIdx_MSUserNegPri:
case ARMMMUIdx_MSPriv:
case ARMMMUIdx_MSUser:
ss = ARMSS_Secure;
break;
case ARMMMUIdx_E3:
case ARMMMUIdx_E30_0:
case ARMMMUIdx_E30_3_PAN:
if (arm_feature(env, ARM_FEATURE_AARCH64) &&
cpu_isar_feature(aa64_rme, env_archcpu(env))) {
ss = ARMSS_Root;
} else {
ss = ARMSS_Secure;
}
break;
case ARMMMUIdx_Phys_Root:
ss = ARMSS_Root;
break;
case ARMMMUIdx_Phys_Realm:
ss = ARMSS_Realm;
break;
default:
g_assert_not_reached();
}
ptw.in_space = ss;
return get_phys_addr_gpc(env, &ptw, address, access_type,
memop, result, fi);
}
hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
MemTxAttrs *attrs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
ARMMMUIdx mmu_idx = arm_mmu_idx(env);
ARMSecuritySpace ss = arm_security_space(env);
S1Translate ptw = {
.in_mmu_idx = mmu_idx,
.in_space = ss,
.in_debug = true,
};
GetPhysAddrResult res = {};
ARMMMUFaultInfo fi = {};
bool ret;
ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, 0, &res, &fi);
*attrs = res.f.attrs;
if (ret) {
return -1;
}
return res.f.phys_addr;
}