| /* |
| * ARM GICv3 emulation: Redistributor |
| * |
| * Copyright (c) 2015 Huawei. |
| * Copyright (c) 2016 Linaro Limited. |
| * Written by Shlomo Pongratz, Peter Maydell |
| * |
| * This code is licensed under the GPL, version 2 or (at your option) |
| * any later version. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "trace.h" |
| #include "gicv3_internal.h" |
| |
| static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs) |
| { |
| /* Return a 32-bit mask which should be applied for this set of 32 |
| * interrupts; each bit is 1 if access is permitted by the |
| * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does |
| * not affect config register accesses, unlike GICD_NSACR.) |
| */ |
| if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { |
| /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */ |
| return cs->gicr_igroupr0; |
| } |
| return 0xFFFFFFFFU; |
| } |
| |
| static int gicr_ns_access(GICv3CPUState *cs, int irq) |
| { |
| /* Return the 2 bit NSACR.NS_access field for this SGI */ |
| assert(irq < 16); |
| return extract32(cs->gicr_nsacr, irq * 2, 2); |
| } |
| |
| static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, |
| uint32_t *reg, uint32_t val) |
| { |
| /* Helper routine to implement writing to a "set-bitmap" register */ |
| val &= mask_group(cs, attrs); |
| *reg |= val; |
| gicv3_redist_update(cs); |
| } |
| |
| static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, |
| uint32_t *reg, uint32_t val) |
| { |
| /* Helper routine to implement writing to a "clear-bitmap" register */ |
| val &= mask_group(cs, attrs); |
| *reg &= ~val; |
| gicv3_redist_update(cs); |
| } |
| |
| static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, |
| uint32_t reg) |
| { |
| reg &= mask_group(cs, attrs); |
| return reg; |
| } |
| |
| static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, |
| int irq) |
| { |
| /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt, |
| * honouring security state (these are RAZ/WI for Group 0 or Secure |
| * Group 1 interrupts). |
| */ |
| uint32_t prio; |
| |
| prio = cs->gicr_ipriorityr[irq]; |
| |
| if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { |
| if (!(cs->gicr_igroupr0 & (1U << irq))) { |
| /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ |
| return 0; |
| } |
| /* NS view of the interrupt priority */ |
| prio = (prio << 1) & 0xff; |
| } |
| return prio; |
| } |
| |
| static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq, |
| uint8_t value) |
| { |
| /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt, |
| * honouring security state (these are RAZ/WI for Group 0 or Secure |
| * Group 1 interrupts). |
| */ |
| if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { |
| if (!(cs->gicr_igroupr0 & (1U << irq))) { |
| /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ |
| return; |
| } |
| /* NS view of the interrupt priority */ |
| value = 0x80 | (value >> 1); |
| } |
| cs->gicr_ipriorityr[irq] = value; |
| } |
| |
| static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset, |
| uint64_t *data, MemTxAttrs attrs) |
| { |
| switch (offset) { |
| case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: |
| *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR); |
| return MEMTX_OK; |
| default: |
| return MEMTX_ERROR; |
| } |
| } |
| |
| static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset, |
| uint64_t value, MemTxAttrs attrs) |
| { |
| switch (offset) { |
| case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: |
| gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value); |
| gicv3_redist_update(cs); |
| return MEMTX_OK; |
| default: |
| return MEMTX_ERROR; |
| } |
| } |
| |
| static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset, |
| uint64_t *data, MemTxAttrs attrs) |
| { |
| switch (offset) { |
| case GICR_CTLR: |
| *data = cs->gicr_ctlr; |
| return MEMTX_OK; |
| case GICR_IIDR: |
| *data = gicv3_iidr(); |
| return MEMTX_OK; |
| case GICR_TYPER: |
| *data = extract64(cs->gicr_typer, 0, 32); |
| return MEMTX_OK; |
| case GICR_TYPER + 4: |
| *data = extract64(cs->gicr_typer, 32, 32); |
| return MEMTX_OK; |
| case GICR_STATUSR: |
| /* RAZ/WI for us (this is an optional register and our implementation |
| * does not track RO/WO/reserved violations to report them to the guest) |
| */ |
| *data = 0; |
| return MEMTX_OK; |
| case GICR_WAKER: |
| *data = cs->gicr_waker; |
| return MEMTX_OK; |
| case GICR_PROPBASER: |
| *data = extract64(cs->gicr_propbaser, 0, 32); |
| return MEMTX_OK; |
| case GICR_PROPBASER + 4: |
| *data = extract64(cs->gicr_propbaser, 32, 32); |
| return MEMTX_OK; |
| case GICR_PENDBASER: |
| *data = extract64(cs->gicr_pendbaser, 0, 32); |
| return MEMTX_OK; |
| case GICR_PENDBASER + 4: |
| *data = extract64(cs->gicr_pendbaser, 32, 32); |
| return MEMTX_OK; |
| case GICR_IGROUPR0: |
| if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { |
| *data = 0; |
| return MEMTX_OK; |
| } |
| *data = cs->gicr_igroupr0; |
| return MEMTX_OK; |
| case GICR_ISENABLER0: |
| case GICR_ICENABLER0: |
| *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0); |
| return MEMTX_OK; |
| case GICR_ISPENDR0: |
| case GICR_ICPENDR0: |
| { |
| /* The pending register reads as the logical OR of the pending |
| * latch and the input line level for level-triggered interrupts. |
| */ |
| uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level); |
| *data = gicr_read_bitmap_reg(cs, attrs, val); |
| return MEMTX_OK; |
| } |
| case GICR_ISACTIVER0: |
| case GICR_ICACTIVER0: |
| *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0); |
| return MEMTX_OK; |
| case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: |
| { |
| int i, irq = offset - GICR_IPRIORITYR; |
| uint32_t value = 0; |
| |
| for (i = irq + 3; i >= irq; i--) { |
| value <<= 8; |
| value |= gicr_read_ipriorityr(cs, attrs, i); |
| } |
| *data = value; |
| return MEMTX_OK; |
| } |
| case GICR_ICFGR0: |
| case GICR_ICFGR1: |
| { |
| /* Our edge_trigger bitmap is one bit per irq; take the correct |
| * half of it, and spread it out into the odd bits. |
| */ |
| uint32_t value; |
| |
| value = cs->edge_trigger & mask_group(cs, attrs); |
| value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16); |
| value = half_shuffle32(value) << 1; |
| *data = value; |
| return MEMTX_OK; |
| } |
| case GICR_IGRPMODR0: |
| if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { |
| /* RAZ/WI if security disabled, or if |
| * security enabled and this is an NS access |
| */ |
| *data = 0; |
| return MEMTX_OK; |
| } |
| *data = cs->gicr_igrpmodr0; |
| return MEMTX_OK; |
| case GICR_NSACR: |
| if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { |
| /* RAZ/WI if security disabled, or if |
| * security enabled and this is an NS access |
| */ |
| *data = 0; |
| return MEMTX_OK; |
| } |
| *data = cs->gicr_nsacr; |
| return MEMTX_OK; |
| case GICR_IDREGS ... GICR_IDREGS + 0x1f: |
| *data = gicv3_idreg(offset - GICR_IDREGS); |
| return MEMTX_OK; |
| default: |
| return MEMTX_ERROR; |
| } |
| } |
| |
| static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset, |
| uint64_t value, MemTxAttrs attrs) |
| { |
| switch (offset) { |
| case GICR_CTLR: |
| /* For our implementation, GICR_TYPER.DPGS is 0 and so all |
| * the DPG bits are RAZ/WI. We don't do anything asynchronously, |
| * so UWP and RWP are RAZ/WI. And GICR_TYPER.LPIS is 0 (we don't |
| * implement LPIs) so Enable_LPIs is RES0. So there are no writable |
| * bits for us. |
| */ |
| return MEMTX_OK; |
| case GICR_STATUSR: |
| /* RAZ/WI for our implementation */ |
| return MEMTX_OK; |
| case GICR_WAKER: |
| /* Only the ProcessorSleep bit is writeable. When the guest sets |
| * it it requests that we transition the channel between the |
| * redistributor and the cpu interface to quiescent, and that |
| * we set the ChildrenAsleep bit once the inteface has reached the |
| * quiescent state. |
| * Setting the ProcessorSleep to 0 reverses the quiescing, and |
| * ChildrenAsleep is cleared once the transition is complete. |
| * Since our interface is not asynchronous, we complete these |
| * transitions instantaneously, so we set ChildrenAsleep to the |
| * same value as ProcessorSleep here. |
| */ |
| value &= GICR_WAKER_ProcessorSleep; |
| if (value & GICR_WAKER_ProcessorSleep) { |
| value |= GICR_WAKER_ChildrenAsleep; |
| } |
| cs->gicr_waker = value; |
| return MEMTX_OK; |
| case GICR_PROPBASER: |
| cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value); |
| return MEMTX_OK; |
| case GICR_PROPBASER + 4: |
| cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value); |
| return MEMTX_OK; |
| case GICR_PENDBASER: |
| cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value); |
| return MEMTX_OK; |
| case GICR_PENDBASER + 4: |
| cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value); |
| return MEMTX_OK; |
| case GICR_IGROUPR0: |
| if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { |
| return MEMTX_OK; |
| } |
| cs->gicr_igroupr0 = value; |
| gicv3_redist_update(cs); |
| return MEMTX_OK; |
| case GICR_ISENABLER0: |
| gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value); |
| return MEMTX_OK; |
| case GICR_ICENABLER0: |
| gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value); |
| return MEMTX_OK; |
| case GICR_ISPENDR0: |
| gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value); |
| return MEMTX_OK; |
| case GICR_ICPENDR0: |
| gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value); |
| return MEMTX_OK; |
| case GICR_ISACTIVER0: |
| gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value); |
| return MEMTX_OK; |
| case GICR_ICACTIVER0: |
| gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value); |
| return MEMTX_OK; |
| case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: |
| { |
| int i, irq = offset - GICR_IPRIORITYR; |
| |
| for (i = irq; i < irq + 4; i++, value >>= 8) { |
| gicr_write_ipriorityr(cs, attrs, i, value); |
| } |
| gicv3_redist_update(cs); |
| return MEMTX_OK; |
| } |
| case GICR_ICFGR0: |
| /* Register is all RAZ/WI or RAO/WI bits */ |
| return MEMTX_OK; |
| case GICR_ICFGR1: |
| { |
| uint32_t mask; |
| |
| /* Since our edge_trigger bitmap is one bit per irq, our input |
| * 32-bits will compress down into 16 bits which we need |
| * to write into the bitmap. |
| */ |
| value = half_unshuffle32(value >> 1) << 16; |
| mask = mask_group(cs, attrs) & 0xffff0000U; |
| |
| cs->edge_trigger &= ~mask; |
| cs->edge_trigger |= (value & mask); |
| |
| gicv3_redist_update(cs); |
| return MEMTX_OK; |
| } |
| case GICR_IGRPMODR0: |
| if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { |
| /* RAZ/WI if security disabled, or if |
| * security enabled and this is an NS access |
| */ |
| return MEMTX_OK; |
| } |
| cs->gicr_igrpmodr0 = value; |
| gicv3_redist_update(cs); |
| return MEMTX_OK; |
| case GICR_NSACR: |
| if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { |
| /* RAZ/WI if security disabled, or if |
| * security enabled and this is an NS access |
| */ |
| return MEMTX_OK; |
| } |
| cs->gicr_nsacr = value; |
| /* no update required as this only affects access permission checks */ |
| return MEMTX_OK; |
| case GICR_IIDR: |
| case GICR_TYPER: |
| case GICR_IDREGS ... GICR_IDREGS + 0x1f: |
| /* RO registers, ignore the write */ |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: invalid guest write to RO register at offset " |
| TARGET_FMT_plx "\n", __func__, offset); |
| return MEMTX_OK; |
| default: |
| return MEMTX_ERROR; |
| } |
| } |
| |
| static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset, |
| uint64_t *data, MemTxAttrs attrs) |
| { |
| switch (offset) { |
| case GICR_TYPER: |
| *data = cs->gicr_typer; |
| return MEMTX_OK; |
| case GICR_PROPBASER: |
| *data = cs->gicr_propbaser; |
| return MEMTX_OK; |
| case GICR_PENDBASER: |
| *data = cs->gicr_pendbaser; |
| return MEMTX_OK; |
| default: |
| return MEMTX_ERROR; |
| } |
| } |
| |
| static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset, |
| uint64_t value, MemTxAttrs attrs) |
| { |
| switch (offset) { |
| case GICR_PROPBASER: |
| cs->gicr_propbaser = value; |
| return MEMTX_OK; |
| case GICR_PENDBASER: |
| cs->gicr_pendbaser = value; |
| return MEMTX_OK; |
| case GICR_TYPER: |
| /* RO register, ignore the write */ |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: invalid guest write to RO register at offset " |
| TARGET_FMT_plx "\n", __func__, offset); |
| return MEMTX_OK; |
| default: |
| return MEMTX_ERROR; |
| } |
| } |
| |
| MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data, |
| unsigned size, MemTxAttrs attrs) |
| { |
| GICv3State *s = opaque; |
| GICv3CPUState *cs; |
| MemTxResult r; |
| int cpuidx; |
| |
| assert((offset & (size - 1)) == 0); |
| |
| /* This region covers all the redistributor pages; there are |
| * (for GICv3) two 64K pages per CPU. At the moment they are |
| * all contiguous (ie in this one region), though we might later |
| * want to allow splitting of redistributor pages into several |
| * blocks so we can support more CPUs. |
| */ |
| cpuidx = offset / 0x20000; |
| offset %= 0x20000; |
| assert(cpuidx < s->num_cpu); |
| |
| cs = &s->cpu[cpuidx]; |
| |
| switch (size) { |
| case 1: |
| r = gicr_readb(cs, offset, data, attrs); |
| break; |
| case 4: |
| r = gicr_readl(cs, offset, data, attrs); |
| break; |
| case 8: |
| r = gicr_readll(cs, offset, data, attrs); |
| break; |
| default: |
| r = MEMTX_ERROR; |
| break; |
| } |
| |
| if (r == MEMTX_ERROR) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: invalid guest read at offset " TARGET_FMT_plx |
| "size %u\n", __func__, offset, size); |
| trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset, |
| size, attrs.secure); |
| /* The spec requires that reserved registers are RAZ/WI; |
| * so use MEMTX_ERROR returns from leaf functions as a way to |
| * trigger the guest-error logging but don't return it to |
| * the caller, or we'll cause a spurious guest data abort. |
| */ |
| r = MEMTX_OK; |
| *data = 0; |
| } else { |
| trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data, |
| size, attrs.secure); |
| } |
| return r; |
| } |
| |
| MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data, |
| unsigned size, MemTxAttrs attrs) |
| { |
| GICv3State *s = opaque; |
| GICv3CPUState *cs; |
| MemTxResult r; |
| int cpuidx; |
| |
| assert((offset & (size - 1)) == 0); |
| |
| /* This region covers all the redistributor pages; there are |
| * (for GICv3) two 64K pages per CPU. At the moment they are |
| * all contiguous (ie in this one region), though we might later |
| * want to allow splitting of redistributor pages into several |
| * blocks so we can support more CPUs. |
| */ |
| cpuidx = offset / 0x20000; |
| offset %= 0x20000; |
| assert(cpuidx < s->num_cpu); |
| |
| cs = &s->cpu[cpuidx]; |
| |
| switch (size) { |
| case 1: |
| r = gicr_writeb(cs, offset, data, attrs); |
| break; |
| case 4: |
| r = gicr_writel(cs, offset, data, attrs); |
| break; |
| case 8: |
| r = gicr_writell(cs, offset, data, attrs); |
| break; |
| default: |
| r = MEMTX_ERROR; |
| break; |
| } |
| |
| if (r == MEMTX_ERROR) { |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "%s: invalid guest write at offset " TARGET_FMT_plx |
| "size %u\n", __func__, offset, size); |
| trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data, |
| size, attrs.secure); |
| /* The spec requires that reserved registers are RAZ/WI; |
| * so use MEMTX_ERROR returns from leaf functions as a way to |
| * trigger the guest-error logging but don't return it to |
| * the caller, or we'll cause a spurious guest data abort. |
| */ |
| r = MEMTX_OK; |
| } else { |
| trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data, |
| size, attrs.secure); |
| } |
| return r; |
| } |
| |
| void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level) |
| { |
| /* Update redistributor state for a change in an external PPI input line */ |
| if (level == extract32(cs->level, irq, 1)) { |
| return; |
| } |
| |
| trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level); |
| |
| cs->level = deposit32(cs->level, irq, 1, level); |
| |
| if (level) { |
| /* 0->1 edges latch the pending bit for edge-triggered interrupts */ |
| if (extract32(cs->edge_trigger, irq, 1)) { |
| cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1); |
| } |
| } |
| |
| gicv3_redist_update(cs); |
| } |
| |
| void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns) |
| { |
| /* Update redistributor state for a generated SGI */ |
| int irqgrp = gicv3_irq_group(cs->gic, cs, irq); |
| |
| /* If we are asked for a Secure Group 1 SGI and it's actually |
| * configured as Secure Group 0 this is OK (subject to the usual |
| * NSACR checks). |
| */ |
| if (grp == GICV3_G1 && irqgrp == GICV3_G0) { |
| grp = GICV3_G0; |
| } |
| |
| if (grp != irqgrp) { |
| return; |
| } |
| |
| if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { |
| /* If security is enabled we must test the NSACR bits */ |
| int nsaccess = gicr_ns_access(cs, irq); |
| |
| if ((irqgrp == GICV3_G0 && nsaccess < 1) || |
| (irqgrp == GICV3_G1 && nsaccess < 2)) { |
| return; |
| } |
| } |
| |
| /* OK, we can accept the SGI */ |
| trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq); |
| cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1); |
| gicv3_redist_update(cs); |
| } |