| /* |
| * TriCore emulation for qemu: fpu helper. |
| * |
| * Copyright (c) 2016 Bastian Koppelmann University of Paderborn |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/helper-proto.h" |
| |
| #define QUIET_NAN 0x7fc00000 |
| #define ADD_NAN 0x7fc00001 |
| #define DIV_NAN 0x7fc00008 |
| #define MUL_NAN 0x7fc00002 |
| #define FPU_FS PSW_USB_C |
| #define FPU_FI PSW_USB_V |
| #define FPU_FV PSW_USB_SV |
| #define FPU_FZ PSW_USB_AV |
| #define FPU_FU PSW_USB_SAV |
| |
| /* we don't care about input_denormal */ |
| static inline uint8_t f_get_excp_flags(CPUTriCoreState *env) |
| { |
| return get_float_exception_flags(&env->fp_status) |
| & (float_flag_invalid |
| | float_flag_overflow |
| | float_flag_underflow |
| | float_flag_output_denormal |
| | float_flag_divbyzero |
| | float_flag_inexact); |
| } |
| |
| static inline bool f_is_denormal(float32 arg) |
| { |
| return float32_is_zero_or_denormal(arg) && !float32_is_zero(arg); |
| } |
| |
| static inline float32 f_maddsub_nan_result(float32 arg1, float32 arg2, |
| float32 arg3, float32 result, |
| uint32_t muladd_negate_c) |
| { |
| uint32_t aSign, bSign, cSign; |
| uint32_t aExp, bExp, cExp; |
| |
| if (float32_is_any_nan(arg1) || float32_is_any_nan(arg2) || |
| float32_is_any_nan(arg3)) { |
| return QUIET_NAN; |
| } else if (float32_is_infinity(arg1) && float32_is_zero(arg2)) { |
| return MUL_NAN; |
| } else if (float32_is_zero(arg1) && float32_is_infinity(arg2)) { |
| return MUL_NAN; |
| } else { |
| aSign = arg1 >> 31; |
| bSign = arg2 >> 31; |
| cSign = arg3 >> 31; |
| |
| aExp = (arg1 >> 23) & 0xff; |
| bExp = (arg2 >> 23) & 0xff; |
| cExp = (arg3 >> 23) & 0xff; |
| |
| if (muladd_negate_c) { |
| cSign ^= 1; |
| } |
| if (((aExp == 0xff) || (bExp == 0xff)) && (cExp == 0xff)) { |
| if (aSign ^ bSign ^ cSign) { |
| return ADD_NAN; |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| static void f_update_psw_flags(CPUTriCoreState *env, uint8_t flags) |
| { |
| uint8_t some_excp = 0; |
| set_float_exception_flags(0, &env->fp_status); |
| |
| if (flags & float_flag_invalid) { |
| env->FPU_FI = 1 << 31; |
| some_excp = 1; |
| } |
| |
| if (flags & float_flag_overflow) { |
| env->FPU_FV = 1 << 31; |
| some_excp = 1; |
| } |
| |
| if (flags & float_flag_underflow || flags & float_flag_output_denormal) { |
| env->FPU_FU = 1 << 31; |
| some_excp = 1; |
| } |
| |
| if (flags & float_flag_divbyzero) { |
| env->FPU_FZ = 1 << 31; |
| some_excp = 1; |
| } |
| |
| if (flags & float_flag_inexact || flags & float_flag_output_denormal) { |
| env->PSW |= 1 << 26; |
| some_excp = 1; |
| } |
| |
| env->FPU_FS = some_excp; |
| } |
| |
| #define FADD_SUB(op) \ |
| uint32_t helper_f##op(CPUTriCoreState *env, uint32_t r1, uint32_t r2) \ |
| { \ |
| float32 arg1 = make_float32(r1); \ |
| float32 arg2 = make_float32(r2); \ |
| uint32_t flags; \ |
| float32 f_result; \ |
| \ |
| f_result = float32_##op(arg2, arg1, &env->fp_status); \ |
| flags = f_get_excp_flags(env); \ |
| if (flags) { \ |
| /* If the output is a NaN, but the inputs aren't, \ |
| we return a unique value. */ \ |
| if ((flags & float_flag_invalid) \ |
| && !float32_is_any_nan(arg1) \ |
| && !float32_is_any_nan(arg2)) { \ |
| f_result = ADD_NAN; \ |
| } \ |
| f_update_psw_flags(env, flags); \ |
| } else { \ |
| env->FPU_FS = 0; \ |
| } \ |
| return (uint32_t)f_result; \ |
| } |
| FADD_SUB(add) |
| FADD_SUB(sub) |
| |
| uint32_t helper_fmul(CPUTriCoreState *env, uint32_t r1, uint32_t r2) |
| { |
| uint32_t flags; |
| float32 arg1 = make_float32(r1); |
| float32 arg2 = make_float32(r2); |
| float32 f_result; |
| |
| f_result = float32_mul(arg1, arg2, &env->fp_status); |
| |
| flags = f_get_excp_flags(env); |
| if (flags) { |
| /* If the output is a NaN, but the inputs aren't, |
| we return a unique value. */ |
| if ((flags & float_flag_invalid) |
| && !float32_is_any_nan(arg1) |
| && !float32_is_any_nan(arg2)) { |
| f_result = MUL_NAN; |
| } |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| return (uint32_t)f_result; |
| |
| } |
| |
| uint32_t helper_fdiv(CPUTriCoreState *env, uint32_t r1, uint32_t r2) |
| { |
| uint32_t flags; |
| float32 arg1 = make_float32(r1); |
| float32 arg2 = make_float32(r2); |
| float32 f_result; |
| |
| f_result = float32_div(arg1, arg2 , &env->fp_status); |
| |
| flags = f_get_excp_flags(env); |
| if (flags) { |
| /* If the output is a NaN, but the inputs aren't, |
| we return a unique value. */ |
| if ((flags & float_flag_invalid) |
| && !float32_is_any_nan(arg1) |
| && !float32_is_any_nan(arg2)) { |
| f_result = DIV_NAN; |
| } |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| |
| return (uint32_t)f_result; |
| } |
| |
| uint32_t helper_fmadd(CPUTriCoreState *env, uint32_t r1, |
| uint32_t r2, uint32_t r3) |
| { |
| uint32_t flags; |
| float32 arg1 = make_float32(r1); |
| float32 arg2 = make_float32(r2); |
| float32 arg3 = make_float32(r3); |
| float32 f_result; |
| |
| f_result = float32_muladd(arg1, arg2, arg3, 0, &env->fp_status); |
| |
| flags = f_get_excp_flags(env); |
| if (flags) { |
| if (flags & float_flag_invalid) { |
| arg1 = float32_squash_input_denormal(arg1, &env->fp_status); |
| arg2 = float32_squash_input_denormal(arg2, &env->fp_status); |
| arg3 = float32_squash_input_denormal(arg3, &env->fp_status); |
| f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 0); |
| } |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| return (uint32_t)f_result; |
| } |
| |
| uint32_t helper_fmsub(CPUTriCoreState *env, uint32_t r1, |
| uint32_t r2, uint32_t r3) |
| { |
| uint32_t flags; |
| float32 arg1 = make_float32(r1); |
| float32 arg2 = make_float32(r2); |
| float32 arg3 = make_float32(r3); |
| float32 f_result; |
| |
| f_result = float32_muladd(arg1, arg2, arg3, float_muladd_negate_product, |
| &env->fp_status); |
| |
| flags = f_get_excp_flags(env); |
| if (flags) { |
| if (flags & float_flag_invalid) { |
| arg1 = float32_squash_input_denormal(arg1, &env->fp_status); |
| arg2 = float32_squash_input_denormal(arg2, &env->fp_status); |
| arg3 = float32_squash_input_denormal(arg3, &env->fp_status); |
| |
| f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 1); |
| } |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| return (uint32_t)f_result; |
| } |
| |
| uint32_t helper_fcmp(CPUTriCoreState *env, uint32_t r1, uint32_t r2) |
| { |
| uint32_t result, flags; |
| float32 arg1 = make_float32(r1); |
| float32 arg2 = make_float32(r2); |
| |
| set_flush_inputs_to_zero(0, &env->fp_status); |
| |
| result = 1 << (float32_compare_quiet(arg1, arg2, &env->fp_status) + 1); |
| result |= f_is_denormal(arg1) << 4; |
| result |= f_is_denormal(arg2) << 5; |
| |
| flags = f_get_excp_flags(env); |
| if (flags) { |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| |
| set_flush_inputs_to_zero(1, &env->fp_status); |
| return result; |
| } |
| |
| uint32_t helper_ftoi(CPUTriCoreState *env, uint32_t arg) |
| { |
| float32 f_arg = make_float32(arg); |
| int32_t result, flags; |
| |
| result = float32_to_int32(f_arg, &env->fp_status); |
| |
| flags = f_get_excp_flags(env); |
| if (flags) { |
| if (float32_is_any_nan(f_arg)) { |
| result = 0; |
| } |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| return (uint32_t)result; |
| } |
| |
| uint32_t helper_itof(CPUTriCoreState *env, uint32_t arg) |
| { |
| float32 f_result; |
| uint32_t flags; |
| f_result = int32_to_float32(arg, &env->fp_status); |
| |
| flags = f_get_excp_flags(env); |
| if (flags) { |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| return (uint32_t)f_result; |
| } |
| |
| uint32_t helper_ftouz(CPUTriCoreState *env, uint32_t arg) |
| { |
| float32 f_arg = make_float32(arg); |
| uint32_t result; |
| int32_t flags; |
| |
| result = float32_to_uint32_round_to_zero(f_arg, &env->fp_status); |
| |
| flags = f_get_excp_flags(env); |
| if (flags & float_flag_invalid) { |
| flags &= ~float_flag_inexact; |
| if (float32_is_any_nan(f_arg)) { |
| result = 0; |
| } |
| } else if (float32_lt_quiet(f_arg, 0, &env->fp_status)) { |
| flags = float_flag_invalid; |
| result = 0; |
| } |
| |
| if (flags) { |
| f_update_psw_flags(env, flags); |
| } else { |
| env->FPU_FS = 0; |
| } |
| return result; |
| } |
| |
| void helper_updfl(CPUTriCoreState *env, uint32_t arg) |
| { |
| env->FPU_FS = extract32(arg, 7, 1) & extract32(arg, 15, 1); |
| env->FPU_FI = (extract32(arg, 6, 1) & extract32(arg, 14, 1)) << 31; |
| env->FPU_FV = (extract32(arg, 5, 1) & extract32(arg, 13, 1)) << 31; |
| env->FPU_FZ = (extract32(arg, 4, 1) & extract32(arg, 12, 1)) << 31; |
| env->FPU_FU = (extract32(arg, 3, 1) & extract32(arg, 11, 1)) << 31; |
| /* clear FX and RM */ |
| env->PSW &= ~(extract32(arg, 10, 1) << 26); |
| env->PSW |= (extract32(arg, 2, 1) & extract32(arg, 10, 1)) << 26; |
| |
| fpu_set_state(env); |
| } |