fpu/softfloat: Specialize on snan_bit_is_one
Only MIPS requires snan_bit_is_one to be variable. While we are
specializing softfloat behaviour, allow other targets to eliminate
this runtime check.
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: Yongbok Kim <yongbok.kim@mips.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Alexander Graf <agraf@suse.de>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
diff --git a/fpu/softfloat-specialize.h b/fpu/softfloat-specialize.h
index d7033b7..d1e06da 100644
--- a/fpu/softfloat-specialize.h
+++ b/fpu/softfloat-specialize.h
@@ -79,13 +79,31 @@
* version 2 or later. See the COPYING file in the top-level directory.
*/
-#if defined(TARGET_XTENSA)
/* Define for architectures which deviate from IEEE in not supporting
* signaling NaNs (so all NaNs are treated as quiet).
*/
+#if defined(TARGET_XTENSA)
#define NO_SIGNALING_NANS 1
#endif
+/* Define how the architecture discriminates signaling NaNs.
+ * This done with the most significant bit of the fraction.
+ * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
+ * the msb must be zero. MIPS is (so far) unique in supporting both the
+ * 2008 revision and backward compatibility with their original choice.
+ * Thus for MIPS we must make the choice at runtime.
+ */
+static inline flag snan_bit_is_one(float_status *status)
+{
+#if defined(TARGET_MIPS)
+ return status->snan_bit_is_one;
+#elif defined(TARGET_HPPA) || defined(TARGET_UNICORE32) || defined(TARGET_SH4)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
/*----------------------------------------------------------------------------
| For the deconstructed floating-point with fraction FRAC, return true
| if the fraction represents a signalling NaN; otherwise false.
@@ -97,7 +115,7 @@
return false;
#else
flag msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
- return msb == status->snan_bit_is_one;
+ return msb == snan_bit_is_one(status);
#endif
}
@@ -118,7 +136,7 @@
#elif defined(TARGET_HPPA)
frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
#else
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
} else {
#if defined(TARGET_MIPS)
@@ -151,7 +169,7 @@
a.frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
#else
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
return parts_default_nan(status);
} else {
a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
@@ -169,7 +187,7 @@
#if defined(TARGET_ARM)
return const_float16(0x7E00);
#else
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
return const_float16(0x7DFF);
} else {
#if defined(TARGET_MIPS)
@@ -195,7 +213,7 @@
#elif defined(TARGET_HPPA)
return const_float32(0x7FA00000);
#else
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
return const_float32(0x7FBFFFFF);
} else {
#if defined(TARGET_MIPS)
@@ -220,7 +238,7 @@
#elif defined(TARGET_HPPA)
return const_float64(LIT64(0x7FF4000000000000));
#else
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
return const_float64(LIT64(0x7FF7FFFFFFFFFFFF));
} else {
#if defined(TARGET_MIPS)
@@ -242,7 +260,7 @@
r.low = LIT64(0xFFFFFFFFFFFFFFFF);
r.high = 0x7FFF;
#else
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
r.low = LIT64(0xBFFFFFFFFFFFFFFF);
r.high = 0x7FFF;
} else {
@@ -274,7 +292,7 @@
{
float128 r;
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
r.low = LIT64(0xFFFFFFFFFFFFFFFF);
r.high = LIT64(0x7FFF7FFFFFFFFFFF);
} else {
@@ -319,7 +337,7 @@
return float16_is_any_nan(a_);
#else
uint16_t a = float16_val(a_);
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
} else {
return ((a & ~0x8000) >= 0x7C80);
@@ -338,7 +356,7 @@
return 0;
#else
uint16_t a = float16_val(a_);
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
return ((a & ~0x8000) >= 0x7C80);
} else {
return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
@@ -356,7 +374,7 @@
#ifdef NO_SIGNALING_NANS
g_assert_not_reached();
#else
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
return float16_default_nan(status);
} else {
return a | (1 << 9);
@@ -375,7 +393,7 @@
return float32_is_any_nan(a_);
#else
uint32_t a = float32_val(a_);
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
} else {
return ((uint32_t)(a << 1) >= 0xFF800000);
@@ -394,7 +412,7 @@
return 0;
#else
uint32_t a = float32_val(a_);
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
return ((uint32_t)(a << 1) >= 0xFF800000);
} else {
return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
@@ -412,7 +430,7 @@
#ifdef NO_SIGNALING_NANS
g_assert_not_reached();
#else
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
# ifdef TARGET_HPPA
a &= ~0x00400000;
a |= 0x00200000;
@@ -651,7 +669,7 @@
return 3;
}
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
/* Prefer sNaN over qNaN, in the a, b, c order. */
if (aIsSNaN) {
return 0;
@@ -786,7 +804,7 @@
return float64_is_any_nan(a_);
#else
uint64_t a = float64_val(a_);
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
return (((a >> 51) & 0xFFF) == 0xFFE)
&& (a & 0x0007FFFFFFFFFFFFULL);
} else {
@@ -806,7 +824,7 @@
return 0;
#else
uint64_t a = float64_val(a_);
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
return ((a << 1) >= 0xFFF0000000000000ULL);
} else {
return (((a >> 51) & 0xFFF) == 0xFFE)
@@ -825,7 +843,7 @@
#ifdef NO_SIGNALING_NANS
g_assert_not_reached();
#else
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
# ifdef TARGET_HPPA
a &= ~0x0008000000000000ULL;
a |= 0x0004000000000000ULL;
@@ -942,7 +960,7 @@
#ifdef NO_SIGNALING_NANS
return floatx80_is_any_nan(a);
#else
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
uint64_t aLow;
aLow = a.low & ~0x4000000000000000ULL;
@@ -967,7 +985,7 @@
#ifdef NO_SIGNALING_NANS
return 0;
#else
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
return ((a.high & 0x7FFF) == 0x7FFF)
&& ((a.low << 1) >= 0x8000000000000000ULL);
} else {
@@ -991,7 +1009,7 @@
#ifdef NO_SIGNALING_NANS
g_assert_not_reached();
#else
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
return floatx80_default_nan(status);
} else {
a.low |= LIT64(0xC000000000000000);
@@ -1105,7 +1123,7 @@
#ifdef NO_SIGNALING_NANS
return float128_is_any_nan(a);
#else
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
&& (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
} else {
@@ -1125,7 +1143,7 @@
#ifdef NO_SIGNALING_NANS
return 0;
#else
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
return ((a.high << 1) >= 0xFFFF000000000000ULL)
&& (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
} else {
@@ -1145,7 +1163,7 @@
#ifdef NO_SIGNALING_NANS
g_assert_not_reached();
#else
- if (status->snan_bit_is_one) {
+ if (snan_bit_is_one(status)) {
return float128_default_nan(status);
} else {
a.high |= LIT64(0x0000800000000000);