blob: 60740ac18ab7b353deeba9f65b729df0d2ee5e45 [file] [log] [blame]
/*
* Copyright (C) 2006 Michael Brown <mbrown@fensystems.co.uk>.
*
* Based in part on pci.c from Etherboot 5.4, by Ken Yap and David
* Munro, in turn based on the Linux kernel's PCI implementation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*
* You can also choose to distribute this program under the terms of
* the Unmodified Binary Distribution Licence (as given in the file
* COPYING.UBDL), provided that you have satisfied its requirements.
*/
FILE_LICENCE ( GPL2_OR_LATER_OR_UBDL );
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <ipxe/tables.h>
#include <ipxe/device.h>
#include <ipxe/pci.h>
/** @file
*
* PCI bus
*
*/
static void pcibus_remove ( struct root_device *rootdev );
/**
* Read PCI BAR
*
* @v pci PCI device
* @v reg PCI register number
* @ret bar Base address register
*
* Reads the specified PCI base address register, including the flags
* portion. 64-bit BARs will be handled automatically. If the value
* of the 64-bit BAR exceeds the size of an unsigned long (i.e. if the
* high dword is non-zero on a 32-bit platform), then the value
* returned will be zero plus the flags for a 64-bit BAR. Unreachable
* 64-bit BARs are therefore returned as uninitialised 64-bit BARs.
*/
static unsigned long pci_bar ( struct pci_device *pci, unsigned int reg ) {
uint32_t low;
uint32_t high;
pci_read_config_dword ( pci, reg, &low );
if ( ( low & (PCI_BASE_ADDRESS_SPACE_IO|PCI_BASE_ADDRESS_MEM_TYPE_MASK))
== PCI_BASE_ADDRESS_MEM_TYPE_64 ) {
pci_read_config_dword ( pci, reg + 4, &high );
if ( high ) {
if ( sizeof ( unsigned long ) > sizeof ( uint32_t ) ) {
return ( ( ( uint64_t ) high << 32 ) | low );
} else {
DBGC ( pci, PCI_FMT " unhandled 64-bit BAR "
"%08x%08x\n",
PCI_ARGS ( pci ), high, low );
return PCI_BASE_ADDRESS_MEM_TYPE_64;
}
}
}
return low;
}
/**
* Find the start of a PCI BAR
*
* @v pci PCI device
* @v reg PCI register number
* @ret start BAR start address
*
* Reads the specified PCI base address register, and returns the
* address portion of the BAR (i.e. without the flags).
*
* If the address exceeds the size of an unsigned long (i.e. if a
* 64-bit BAR has a non-zero high dword on a 32-bit machine), the
* return value will be zero.
*/
unsigned long pci_bar_start ( struct pci_device *pci, unsigned int reg ) {
unsigned long bar;
bar = pci_bar ( pci, reg );
if ( bar & PCI_BASE_ADDRESS_SPACE_IO ) {
return ( bar & ~PCI_BASE_ADDRESS_IO_MASK );
} else {
return ( bar & ~PCI_BASE_ADDRESS_MEM_MASK );
}
}
/**
* Read membase and ioaddr for a PCI device
*
* @v pci PCI device
*
* This scans through all PCI BARs on the specified device. The first
* valid memory BAR is recorded as pci_device::membase, and the first
* valid IO BAR is recorded as pci_device::ioaddr.
*
* 64-bit BARs are handled automatically. On a 32-bit platform, if a
* 64-bit BAR has a non-zero high dword, it will be regarded as
* invalid.
*/
static void pci_read_bases ( struct pci_device *pci ) {
unsigned long bar;
int reg;
/* Clear any existing base addresses */
pci->ioaddr = 0;
pci->membase = 0;
/* Get first memory and I/O BAR addresses */
for ( reg = PCI_BASE_ADDRESS_0; reg <= PCI_BASE_ADDRESS_5; reg += 4 ) {
bar = pci_bar ( pci, reg );
if ( bar & PCI_BASE_ADDRESS_SPACE_IO ) {
if ( ! pci->ioaddr )
pci->ioaddr =
( bar & ~PCI_BASE_ADDRESS_IO_MASK );
} else {
if ( ! pci->membase )
pci->membase =
( bar & ~PCI_BASE_ADDRESS_MEM_MASK );
/* Skip next BAR if 64-bit */
if ( bar & PCI_BASE_ADDRESS_MEM_TYPE_64 )
reg += 4;
}
}
}
/**
* Enable PCI device
*
* @v pci PCI device
*
* Set device to be a busmaster in case BIOS neglected to do so. Also
* adjust PCI latency timer to a reasonable value, 32.
*/
void adjust_pci_device ( struct pci_device *pci ) {
unsigned short new_command, pci_command;
unsigned char pci_latency;
pci_read_config_word ( pci, PCI_COMMAND, &pci_command );
new_command = ( pci_command | PCI_COMMAND_MASTER |
PCI_COMMAND_MEM | PCI_COMMAND_IO );
if ( pci_command != new_command ) {
DBGC ( pci, PCI_FMT " device not enabled by BIOS! Updating "
"PCI command %04x->%04x\n",
PCI_ARGS ( pci ), pci_command, new_command );
pci_write_config_word ( pci, PCI_COMMAND, new_command );
}
pci_read_config_byte ( pci, PCI_LATENCY_TIMER, &pci_latency);
if ( pci_latency < 32 ) {
DBGC ( pci, PCI_FMT " latency timer is unreasonably low at "
"%d. Setting to 32.\n", PCI_ARGS ( pci ), pci_latency );
pci_write_config_byte ( pci, PCI_LATENCY_TIMER, 32);
}
}
/**
* Read PCI device configuration
*
* @v pci PCI device
* @ret rc Return status code
*/
int pci_read_config ( struct pci_device *pci ) {
uint32_t busdevfn;
uint8_t hdrtype;
uint32_t tmp;
/* Ignore all but the first function on non-multifunction devices */
if ( PCI_FUNC ( pci->busdevfn ) != 0 ) {
busdevfn = pci->busdevfn;
pci->busdevfn = PCI_FIRST_FUNC ( pci->busdevfn );
pci_read_config_byte ( pci, PCI_HEADER_TYPE, &hdrtype );
pci->busdevfn = busdevfn;
if ( ! ( hdrtype & PCI_HEADER_TYPE_MULTI ) )
return -ENODEV;
}
/* Check for physical device presence */
pci_read_config_dword ( pci, PCI_VENDOR_ID, &tmp );
if ( ( tmp == 0xffffffff ) || ( tmp == 0 ) )
return -ENODEV;
/* Populate struct pci_device */
pci->vendor = ( tmp & 0xffff );
pci->device = ( tmp >> 16 );
pci_read_config_dword ( pci, PCI_REVISION, &tmp );
pci->class = ( tmp >> 8 );
pci_read_config_byte ( pci, PCI_INTERRUPT_LINE, &pci->irq );
pci_read_config_byte ( pci, PCI_HEADER_TYPE, &pci->hdrtype );
pci_read_bases ( pci );
/* Initialise generic device component */
snprintf ( pci->dev.name, sizeof ( pci->dev.name ), "%04x:%02x:%02x.%x",
PCI_SEG ( pci->busdevfn ), PCI_BUS ( pci->busdevfn ),
PCI_SLOT ( pci->busdevfn ), PCI_FUNC ( pci->busdevfn ) );
pci->dev.desc.bus_type = BUS_TYPE_PCI;
pci->dev.desc.location = pci->busdevfn;
pci->dev.desc.vendor = pci->vendor;
pci->dev.desc.device = pci->device;
pci->dev.desc.class = pci->class;
pci->dev.desc.ioaddr = pci->ioaddr;
pci->dev.desc.irq = pci->irq;
INIT_LIST_HEAD ( &pci->dev.siblings );
INIT_LIST_HEAD ( &pci->dev.children );
return 0;
}
/**
* Find next device on PCI bus
*
* @v pci PCI device to fill in
* @v busdevfn Starting bus:dev.fn address
* @ret busdevfn Bus:dev.fn address of next PCI device
* @ret rc Return status code
*/
int pci_find_next ( struct pci_device *pci, uint32_t *busdevfn ) {
static struct pci_range range;
uint8_t hdrtype;
uint8_t sub;
uint32_t end;
unsigned int count;
int rc;
/* Find next PCI device, if any */
do {
/* Find next PCI bus:dev.fn address range, if necessary */
if ( ( *busdevfn - range.start ) >= range.count ) {
pci_discover ( *busdevfn, &range );
if ( *busdevfn < range.start )
*busdevfn = range.start;
if ( ( *busdevfn - range.start ) >= range.count )
break;
}
/* Check for PCI device existence */
memset ( pci, 0, sizeof ( *pci ) );
pci_init ( pci, *busdevfn );
if ( ( rc = pci_read_config ( pci ) ) != 0 )
continue;
/* If device is a bridge, expand the PCI bus:dev.fn
* address range as needed.
*/
pci_read_config_byte ( pci, PCI_HEADER_TYPE, &hdrtype );
hdrtype &= PCI_HEADER_TYPE_MASK;
if ( hdrtype == PCI_HEADER_TYPE_BRIDGE ) {
pci_read_config_byte ( pci, PCI_SUBORDINATE, &sub );
end = PCI_BUSDEVFN ( PCI_SEG ( *busdevfn ),
( sub + 1 ), 0, 0 );
count = ( end - range.start );
if ( count > range.count ) {
DBGC ( pci, PCI_FMT " found subordinate bus "
"%#02x\n", PCI_ARGS ( pci ), sub );
range.count = count;
}
}
/* Return this device */
return 0;
} while ( ++(*busdevfn) );
return -ENODEV;
}
/**
* Find driver for PCI device
*
* @v pci PCI device
* @ret rc Return status code
*/
int pci_find_driver ( struct pci_device *pci ) {
struct pci_driver *driver;
struct pci_device_id *id;
unsigned int i;
for_each_table_entry ( driver, PCI_DRIVERS ) {
if ( ( driver->class.class ^ pci->class ) & driver->class.mask )
continue;
for ( i = 0 ; i < driver->id_count ; i++ ) {
id = &driver->ids[i];
if ( ( id->vendor != PCI_ANY_ID ) &&
( id->vendor != pci->vendor ) )
continue;
if ( ( id->device != PCI_ANY_ID ) &&
( id->device != pci->device ) )
continue;
pci_set_driver ( pci, driver, id );
return 0;
}
}
return -ENOENT;
}
/**
* Probe a PCI device
*
* @v pci PCI device
* @ret rc Return status code
*
* Searches for a driver for the PCI device. If a driver is found,
* its probe() routine is called.
*/
int pci_probe ( struct pci_device *pci ) {
int rc;
DBGC ( pci, PCI_FMT " (%04x:%04x) has driver \"%s\"\n",
PCI_ARGS ( pci ), pci->vendor, pci->device, pci->id->name );
DBGC ( pci, PCI_FMT " has mem %lx io %lx irq %d\n",
PCI_ARGS ( pci ), pci->membase, pci->ioaddr, pci->irq );
if ( ( rc = pci->driver->probe ( pci ) ) != 0 ) {
DBGC ( pci, PCI_FMT " probe failed: %s\n",
PCI_ARGS ( pci ), strerror ( rc ) );
return rc;
}
return 0;
}
/**
* Remove a PCI device
*
* @v pci PCI device
*/
void pci_remove ( struct pci_device *pci ) {
pci->driver->remove ( pci );
DBGC ( pci, PCI_FMT " removed\n", PCI_ARGS ( pci ) );
}
/**
* Probe PCI root bus
*
* @v rootdev PCI bus root device
*
* Scans the PCI bus for devices and registers all devices it can
* find.
*/
static int pcibus_probe ( struct root_device *rootdev ) {
struct pci_device *pci = NULL;
uint32_t busdevfn = 0;
int rc;
/* Skip automatic probing if prohibited */
if ( ! pci_can_probe() )
return 0;
do {
/* Allocate struct pci_device */
if ( ! pci )
pci = malloc ( sizeof ( *pci ) );
if ( ! pci ) {
rc = -ENOMEM;
goto err;
}
/* Find next PCI device, if any */
if ( ( rc = pci_find_next ( pci, &busdevfn ) ) != 0 )
break;
/* Look for a driver */
if ( ( rc = pci_find_driver ( pci ) ) != 0 ) {
DBGC ( pci, PCI_FMT " (%04x:%04x class %06x) has no "
"driver\n", PCI_ARGS ( pci ), pci->vendor,
pci->device, pci->class );
continue;
}
/* Add to device hierarchy */
pci->dev.parent = &rootdev->dev;
list_add ( &pci->dev.siblings, &rootdev->dev.children );
/* Look for a driver */
if ( ( rc = pci_probe ( pci ) ) == 0 ) {
/* pcidev registered, we can drop our ref */
pci = NULL;
} else {
/* Not registered; re-use struct pci_device */
list_del ( &pci->dev.siblings );
}
} while ( ++busdevfn );
free ( pci );
return 0;
err:
free ( pci );
pcibus_remove ( rootdev );
return rc;
}
/**
* Remove PCI root bus
*
* @v rootdev PCI bus root device
*/
static void pcibus_remove ( struct root_device *rootdev ) {
struct pci_device *pci;
struct pci_device *tmp;
list_for_each_entry_safe ( pci, tmp, &rootdev->dev.children,
dev.siblings ) {
pci_remove ( pci );
list_del ( &pci->dev.siblings );
free ( pci );
}
}
/** PCI bus root device driver */
static struct root_driver pci_root_driver = {
.probe = pcibus_probe,
.remove = pcibus_remove,
};
/** PCI bus root device */
struct root_device pci_root_device __root_device = {
.dev = { .name = "PCI" },
.driver = &pci_root_driver,
};
/* Drag in objects via pcibus_probe() */
REQUIRING_SYMBOL ( pcibus_probe );
/* Drag in PCI configuration */
REQUIRE_OBJECT ( config_pci );